
A111D3 7MDD31
N I STIR 4 80 6

Procedures Manual for Testing
CGM Generator Products That
Claim Conformance to
FIPS 128 and MII^D-28003

Daniel R. Benign!
Editor

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Information Systems Engineering Division

Gaithersburg, MD 20899

“QC—
100

.056

4806

1992

NIST

Procedures Manual for Testing
CGM Generator Products That
Claim Conformance to
FIPS 128 and MIL-D-28003

Daniel R. Benign!

Editor

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Information Systems Engineering Division

Gaithersburg, MD 20899

March 1992

U.S. DEPARTMENT OF COMMERCE
Barbara Hackman Franklin, Secretary

TECHNOLOGY ADMINISTRATION
Robert M. White, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons. Director

Procedures Manual For Testing

CGM Generator Products

That Claim Conformance to

FIPS 128 and MIL-D-28003

TABLE OF CONTENTS

Executive Summary v
Notes viii

Chapter l: Testing Methodology: Overview and Definitions 1

1.1 Testing Philosophy 1

1.1.1 Objective 1

1.1.2 Basic Concepts 1

1.1.3 ISO 10641 1

1.2 Definitions 1

1.2.1 C6M Generator 1

1.2.2 CALS Mode 2

1.2.3 CGM-Under-Test 2

1.2.4 Generator-Under-Test 2

1.2.5 CGM Suite>Under-Test 2

1.2.6 Native Suite 2

1.2.7 CGM Hardcopy 2

1.2.8 Native Hardcopy 2

1.2.9 Reference Interpreter 3

1.2.10 Test Suite Description 3

1.2.11 Test Image 3

1.3 Testing Methodology 3

1.3.1 Falsification Testing 3

1.3.2 Visual Inspection 4

1.4 The CGM Standard, FIPS 128, and MIL-D-28003 4

1.4.1 CGM Binary Encoding (ISO 8632/3-FIPS 128) Essentials . 4

1.4.2 CALS CGM Application Profile (MIL-D-28003) Essentials 5
1.4.3 Required vs Optional Elements and Behavior 5

1.5 Available Testing Tools 6

1.5.1 CGM/MlL-D-28003 Requirements Document 6

1.5.2 Reference Interpreters 6

1.6 Overview of the Testing Process 7

1.6.1 Characteristics of the Generator-under-Test 7

1.6.2 Specifying the CGM Suite-under-Test 7

1.6.3 Testing the Completeness of the CGM Suite-under-test 7

1.6.4 Testing for Syntactic Correctness 8
1.6.5 Verifying Semantic Correctness 8
1.6.6 Assembling the Test Report 8

Chapter 2: Gathering Data About the Generator-Under-Test 9

2.1 Determining What can be Produced by the Generator 9

2.1.1 Formal Definition of the FIPS 128 Standard 9

2.1.2 Generating the Questionnaire 9

2.1.3 Filling Out the Questionnaire 10

Chapter 3: Defining the Client-Specific Test Suite 12
3.1 Using the Questionnaire Results 12

3.1.1 Checking the Answers to the Questionnaire 12
3.1.2 Interacting with the Client 14

iii

TABLE OF CONTENTS (Continued)

3.2 Semi-automatic Generation of the Test Suite Description . . 14
3.3 Manual Tuning of the Test Suite Description 14
3.4 Client Instructions 15

3.4.1 The Test Suite Description 15
3.4.2 Test Images 15

Chapter 4: Checking the Completeness of the Client Package 16
4.1 Using the Client's Product to Generate the CGM

Suite-Under-Test from the Native Suite 16
4.2 Using the MetaCheck Frequency Information 17
4.3 Using the MetaCheck Tracing Facility for Verifying The

Inclusion of Required Metafile Descriptor, Picture
Descriptor, and Control Element Parameter Combinations ... 17

4.4 Using the MetaCheck Tracing Facility for Verifying The
Inclusion of Required Primitive and Attribute Element
Parameter Combinations 18

Chapter 5: Checking the Syntactic Correctness of the Client-Supplied
CGMS 19

5.1 Running CTS/MetaCheck 19
5.1.1 Checking for FIPS 128 Syntactic Correctness 19
5.1.2 Checking for CALS MIL-D-28003 Syntactic Correctness . 19

5.2 Understanding the Error Reports 19
5.3 Understanding the Warning Advisories and Bulletins 19
5.4 Documenting Discrepancies 20

Chapter 6: Checking the Semantic Correctness of the Client-Supplied
CGMs 21

6.1 Comparing Native Hardcopy with CGM Hardcopy 21
6.2 Understanding Visual Differences 22
6.3 Allowed Visual Discrepancies 23
6.4 Docimenting Discrepancies 24

Chapter 7: Assembling the Test Report 26
7.1 Package Completeness 26
7.2 Syntactic Correctness 26
7.3 Semantic Correctness 26
7.4 Registration of Report by NIST 26

APPENDIX A: FORMAL DESCRIPTION OF CGM 27

APPENDIX B: CGM FORMAL DESCRIPTION GRAMMAR 39

APPENDIX C: GENERATOR QUESTIONNAIRE 47

APPENDIX D: TEST SUITE DESCRIPTION DATABASE 73

APPENDIX E: ANNOTATED TEST IMAGES 101

iv

EXECUTIVE SUMMARY

PURPOSE

This report was prepared by NIST in support of the Computer-aided
Acquisition and Logistics Support (CALS) initiative. It represents
a particular FY91 contract deliverable task to develop a tool to
determine conformance of a CGM (Computer Graphics Metafile)
Generator to the CALS Application Profile, military specification
MIL-D-28003.

BACKGROUND

It was known from the beginning of the CALS work, back in 1986,
that the CGM standard offered no conformance statements concerning
either writers (generators) or readers (interpreters) of metafiles.
An international workshop on CGM Certification held in the United
Kingdom in March of 1987 concluded that "a CGM Testing Architecture
must include testing for CGM generators and interpreters.”

Although work has concentrated on developing the Application
Profile for CGM in CALS (namely MIL-D-28003), over the last three
years the National Institute of Standards and Technology (NIST)
has developed a testing methodology to test metafiles to both the
CGM Federal Information Processing Standard (FIPS 128) and the MIL-
D-28003. A test tool has been developed, and a conformance testing
service for metafiles recently (May 1991) began. This is the first
of three parts of a total CGM system conformance test suite. The
other two parts necessary for a complete CGM system conformance
test suite entail: verifying that a CGM generator produces
conforming metafiles which accurately and correctly define the
intended picture, and ensuring that a CGM interpreter can correctly
and completely parse any CGM file and produce the intended picture.

MIL-D-28003 specifies that a CGM Application Profile contains three
parts: the metafile; the generator; and the interpreter. Now that
testing metafiles has begun, the next logical phase of this work
involves developing procedures for testing conformance for
generators both to the CGM and to MIL-D-28003. The Procedures
Manual provides the details necessary for performing this function.

DISCUSSION

The objective of the generator testing program is to determine
whether a given product, in this case a CGM generator, always
produces picture interchange files (Computer Graphic
Metafiles—CGMs) that conform to the FIPS 128 CGM standard and

V

the DOD CALS CGM Application Profile (MIL-D-28003) . The tradeoff
has been to be able to perform this job with a reasonable
likelihood of correctness while at the same time at a cost
commensurate with the value.

Correctness has two aspects; syntactic correctness and semantic
correctness. Syntactic correctness can be determined by examining
each CGM produced by the tested product and verifying that it meets
all the rules including such considerations as the order of the
elements, how each element is coded, and whether required elements
are present.

Semantic correctness is more difficult to assess. The tester must
compare the picture produced from the coded CGM with the original
picture that the tested product intended to store in the CGM.
Differences between the pictures either indicate a semantic error
in the CGM generator or can be explained as variations across
implementations—variations that are allowed by the standard.

Generally speaking, it is impossible to test "all possible" CGMs
any given generator is capable of producing. Therefore, one must
test an appropriate sample (subset) of all possible CGMs and look
for errors in syntax or semantics. Determining and specifying this
"appropriate subset" of CGMs is the main challenge of the test
service.

The CGM Testing Methodology is based on the concept of
falsification testing. This concept refers to a process that
proceeds as follows;

(a) Determine the characteristics of the product being
tested.

(b) Specify a certain set of initial conditions (and inputs)

,

each of which causes the generation of one particular
result (output)

.

(c) Examine each output for correctness—first syntactic
correctness, then semantic correctness.

(d) If no discrepancies are noted, declare the product
"correct.

"

Falsification testing has known weaknesses. The most important of
these is that the absence of errors does not guarantee conformance.
But for many testing situations, it is the only method that is
practical and whose costs are commensurate with the value to be
obtained by testing. For testing CGM generators for conformance
to FIPS 128 standard and the CALS MIL-D-28003 application profile,
it is the only practical method that has been identified.

vi

CALS USE/IMPACT

This Procedures Manual provides a complete methodology for how to
test generators for conformance to MIL-D-28003. However, due to
the release of the revision of MIL-D-28003, known as MIL-D-28003A,
this manual must be updated to account for the additional
functionality contained in the new revision.

The procedures manual does:

o identify the appropriate number, both in quantity and
type, of metafiles necessary to verify correctness;

o specify the different metafiles needed for testing; and

o specify guidelines for the tester and implementor to
determine correctness of the imaged files.

RECOMMENDATIONS

The NIST Computer Systems Laboratory (CSL) recommends strongly that
a full testing program for MIL-D-28003 requires testing of CGM
generators, and that testing must be done to up-to-date versions
of both the CGM standard and MIL-D-28003. As new versions of the
CGM standard and MIL-D-28003 are released, a maintenance effort is
required to update the Procedures Manual, test suite, and
supporting test tools to be of use to CALS in the future.

NIST/CSL also recommends that this Procedures Manual be used in an
actual testing environment to determine its effectiveness in
testing CGM generators.

ACKNOWLEDGMENT

The editor would like to acknowledge the major technical
contributor to this report. Dr. Peter R. Bono of Peter R. Bono
Associates, Inc.

vii

NOTES

The CGM Formal Description explained in Chapter 2 does not
represent certain relationships between CGM elements. Inquiring
about these special cases is not covered by the Questionnaire.
Therefore, no special instructions are included to require sponsors
of generators-under-test to produce CGM files that show the special
relationships. These special cases, not covered by these testing
procedures , are

:

(a) Specifications of two VDC corner points in VDC EXTENT
and CLIP RECTANGLE, where the relationship of the first
point to the second point (i.e., below and to the left,
above and to the left, above and to the right, below and
to the right) is at issue.

(b) Special meanings of characters with a string (e.g.,
formatting characters)

.

(c) Specifications of circular arc 3 point close with various
degenerate conditions:

(cl) Only one distinct point is given.
(c2) Two distinct points and the intermediate point

coincides with the starting point.
(c3) Two distinct points and the intermediate point

coincides with the ending point.
(c4) Two distinct points and the starting point coincides

with the ending point.
(c5) Three collinear points and the intermediate point

lies between the starting point and the ending
point.

(c6) Three collinear points and the intermediate point
does not lie between the starting point and the
ending point.

(d) ELLIPSE elements where the start ray and end ray
coincide.

(e) CHARACTER ORIENTATION elements where the character up
vector and the character base vector are not at right
angles to each other.

(f) COLOUR elements whose default is a function of the
"device dependent background colour" or "device dependent
foreground colour."

(g) Attribute elements (MARKER SIZE, LINE WIDTH, CHARACTER
HEIGHT, EDGE WIDTH, FILL REFERENCE POINT, and PATTERN
SIZE) whose defaults are a function of VDC EXTENT.

viii

1. Testing Methodology: Overview and Definitions

1.1 Testing Philosophy

1.1.1 Objective

The objective of this testing program is to determine, within a
reasonable likelihood of correctness and at a cost commensurate
with the value, whether a given product always produces picture
interchange files (Computer Graphic Metafiles—CGMs) that conform
to FIPS 128 and/or the DOD CALS CGM Application Profile
(MIL-D-28003)

.

1.1.2 Basic Concepts

Correctness has two aspects: syntactic correctness and semantic
correctness. Syntactic correctness can be determined by examining
each CGM produced by the tested product and verifying that it meets
all the rules including such considerations as the order of the
elements, how each element is coded, and whether required elements
are present.

Semantic correctness is more difficult to assess. The tester must
compare the picture produced from the coded CGM with the original
picture that the tested product intended to store in the CGM.
Differences between the pictures either indicate a semantic error
in the CGM generator or can be explained as variations across
implementations—variations that are allowed by the standard,

1.1.3 ISO 10641

ISO 10641, "Conformance Testing of Implementations of Graphics
Standards," is now at the Draft International Standard (DIS) stage.
It provides some general guidance regarding the aims and objectives
of a Graphics Test Suite and a Graphics Test Service. It also
suggests procedures and guidelines for the establishment and
operation of such a Test Service.

1.2 Definitions

Words or phrases defined in this section are set in boldface type
wherever they are used in the remainder of this manual.

1.2.1 CGM Generator

A CGM generator is a program, process, or product that can write
CGM (FIPS 128) files, which represent a graphical picture assembled
from information gathered or calculated by the program, process,
or product. Some CGM generators always operate in CALS mode or can
be made to operate in CALS mode.

1

1.2.2
CALS Mode

When a CGM generator produces CGMs that always conform to the
additional constraints of the CALS MIL-D-28003 CGM application
profile, the CGM generator is said to be operating in CALS mode.1.2.3

CGM-Under-Test

In the context of this test service, a CGM-under-test is a CGM file
that is being examined to determine whether it indeed satisfies the
requirements of FIPS 128 alone or the requirements of both FIPS 128
and MIL-D-28003.

1.2.4 Generator-Under-Test

In the context of this test service, a generator-under-test is a
product being tested to determine if all CGMs it is capable of
writing in fact conform to FIPS 128 or, when it operates in CALS
mode, conform to MIL-D-28003.

1.2.5 CGM Suite-Under-Test

The CGM suite-under-test is the total collection of individual CGM
files that will be examined in order to determine the correctness
of the generator-under-test.

1.2.6 Native Suite

The native suite is a collection of files, generally in a format
proprietary to the specific application which contains the CGM
generation capability. The native suite is that collection of
files which the CGM generator-under-test uses to produce the CGM
suite-under-test

.

1.2.7 CGM Hardcopy

To determine the semantic correctness of a CGM-under-test, the test
service uses a reference interpreter to read the CGM-under-test and
produce a pictorial realization of the CGM-under-test. This
picture will be called the CGM hardcopy—although it may appear
only transitorily on a display screen.

1.2.8 Native Hardcopy

The CGM hardcopy is compared with the picture intended to be
interchanged by the generator-under-test. This picture, known as
the native hardcopy, is produced by the generator-under-test and
may be truly in hardcopy form or be visible only on a display
screen. There is one native hardcopy for each file in the native
suite. There is one CGM hardcopy for each file in the CGM

2

suite-under-test. There is a one-to-one correspondence between
the set of native hardcopies and the set of C6M hardcopies.

1.2.9 Reference Interpreter

In the context of this test service, a reference interpreter is a
program that reads CGMs-under-test and produces correct pictorial
realizations of their contents. Ideally, the reference interpreter
has been designed to satisfy the assertions of a test requirements
document, which itself has been derived directly from the standard
document. Reference interpreters should have been thoroughly
checked by the developers and testers and also should have endured
considerable field use.

1.2.10 Test Suite Description

The verbal specifications that outline the requirements to be
satisfied by the CGM suite-under-test are known collectively as
the test suite description. The testing process requires that the
CGM suite-under-test adhere to the specifications in the test suite
description.

1.2.11

Test Image

To supplement the test suite description, the Test Service has
developed a suite of test images (see Appendix D) . The testing
process asks that the CGM suite-under-test contain as many of these
test images as possible, matching the test image appearance and
content as closely as possible. An absolute requirement cannot be
set because not all generators-under-test are capable of creating
all test images.

1.3 Testing Methodology

Generally speaking, it is impossible to test "all possible" CGMs
any given product is capable of producing. Therefore, one must
test an appropriate sample (subset) of all possible CGMs and look
for errors in syntax or semantics. Determining and specifying this
"appropriate subset" of CGMs is the main challenge of the test
service. Once the CGM suite-under-test is selected and native
hardcopies obtained, it is a relatively straightforward procedure
to check for syntactic correctness (see section 1.3.2. 1) and
semantic correctness (see section 1.3. 2. 2).

1.3.1 Falsification Testing

The CGM Testing Methodology is based on the concept of
falsification testing. This concept refers to a process that
proceeds as follows:

characteristics of the product being(a) Determine the
tested.

3

(b) Specify a certain set of initial conditions (and inputs)

,

each of which causes the generation of one particular
result (output)

.

(c) Examine each output for correctness—first syntactic
correctness, then semantic correctness.

(d) If no discrepancies are noted, declare the product
"correct.

"

Falsification testing has known weaknesses, but, for many testing
situations, it is the only method that is practical and whose costs
are commensurate with the value to be obtained by testing. For
testing C6M generators for conformance to FIPS 128 standard and the
CALS MIL-D-28003 application profile, it is the only practical
method that has been identified.

1.3.2 Visual Inspection

To determine semantic correctness of each C6M-under-test, it is
necessary to visually compare the C6M hardcopy corresponding to
the C6M-under-test, which is produced by the reference interpreter,
with the native hardcopy, which was produced by the CGM
generator-under-test. Certain differences (coming from differences
in hardware capabilities or implementation-dependencies permitted
by the standard) are acceptable, while most are not. Guidelines
should be available to the Test Service operator, indicating where
the boundary between allowable differences and errors lies.

1.4 The CGM Standard, FIPS 128, and MIL-D-28003

1.4.1 CGM Binary Encoding (ISO 8632/3—FIPS 128)
Essentials

A CGM file conforming to FIPS 128 is coded as a stream of octets.
A sequence of octets comprise a CGM element. Each element consists
of a header followed by its parameter data.

The header contains the opcode (class and id) of the element plus
length information. The length value is the number of octets of
parameter data that belong to this element. The length values must
be exact, according to the requirements of the standard. It is not
permissable to specify longer lengths and pad the parameter data
with nulls or other data not specified in the standard. Each
element must align on an even octet count, so it might be necessary
to insert a null character occasionally within the CGM file. It
is not allowed that this pad character be included in the length
count of the preceding element.

4

Elements come in short form (the element with its data fits within
31 octets) and long form (all other elements) . Furthermore,
elements may be partitioned or not.

Strings are an important data type in the FIPS 128. A string is
coded as an octet containing the string length followed by the
string characters themselves. This data type is used for GDP,
ESCAPE, and APPLICATION DATA elements. It is a common error to
omit the string length information as the first octet of the
parameter data. Strings also can be coded in short form (for up
to 30 characters) and long form (for all longer strings)

.

1.4.2 CALS CGM Application Profile (MIL-D-28003)
Essentials

Generally speaking, the CALS CGM application profile adds
constraints beyond those specified in FIPS 128. All MIL-D-28003
conforming CGM files are, by definition, FIPS 128 conforming, but
the converse is not true.

The purpose of the CALS CGM application profile is to set "maximum
allowable limits" for the behavior of CGM generators and specify
"minimum requirements" for the behavior of CGM interpreters. When
and only when these requirements are compatible is unambiguous
interchange possible. Otherwise, a CGM generator could use a given
element (say, MARKER TYPE) or a given attribute value (say, MARKER
TYPE 3) and try to present the file to a CGM interpreter that did
not recognize the MARKER TYPE element or did not know what to do
if MARKER TYPE 3 were encountered.

In sum, the CALS CGM application profile places constraints on
generators (e.g., limiting the numbers of points in primitives or
the index values used in attribute elements) and specifies minimum
requirements for interpreters (e.g., that all elements be able to
be interpreted)

.

1.4.3 Required vs Optional Elements and Behavior

A correct CGM need only contain a few specific elements. These
are the delimiter elements, plus METAFILE VERSION and METAFILE
ELEMENT LIST. A CGM conforming to MIL--D-28003 must also contain
a METAFILE DESCRIPTION element that includes a specific text
substring as part of the parameter data.

From a CGM generator point of view, all other elements are
optional. That is, when producing CGMs, there is no specific
requirement that any given CGM element (e.g., RECTANGLE) or CGM
parameter (e.g., TEXT PRECISION character) be able to be written
to a CGM file.

This situation presents problems for a Testing Service because it
is not possible to demand that any given set of CGM files be able

5

to be produced by the generator-under-test. Consequently, the
characteristics of the generator-under-test must be determined (see
section 1.6) before the instructions for creating the CGM
suite-under-test can be produced (these instructions are known as
the test suite description)

.

1.5 Available Testing Tools

1.5.1 C6M/MIL-D-28003 Requirements Document

The CGM/MIL-D-28003 Requirements Document was published by NIST in
May 1990 as document NISTIR 4329. Next to the standards themselves
(ISO 8632 and MIL-D-28003) , the Requirements Document is the most
authoritative source for determining what constitutes a correct
CGM.

1.5.2 Reference Interpreters

As yet, the Testing Service has not certified any reference
interpreters for CGM. Consequently, the testing service will use
testing tools that are candidates for certification, but which are
not yet certified.

Two testing tools are used in implementing the CGM Test Service;

o MetaCheck with the CALS Option (see section 1.5.2. 1) to
check syntactic correctness; and

o CGM-View (see section 1.5. 2. 2) to check for semantic
correctness

.

Because neither tool has been certified as correct, any
discrepancies between the output provided by the
generator-under-test and the testing tool will be thoroughly
investigated by manual methods to verify that the testing tool is
indeed accurate in its reporting.

1.5. 2.1 CTS/MetaCheck with the CTUliS Option

CTS/MetaCheck version 2 with the CALS Option (known as "MetaCALS"
for short) is a stand-alone utility (i.e., computer program) that
analyzes the syntactic correctness of an individual CGM file. It
produces a conformance report listing all errors found. Deviations
from the basic ISO 8632 (CGM) standard as well as deviations from
the CALS MIL-D-28003 application profile are reported in separate
sections. MetaCALS can show a trace of all the elements in a CGM;
error messages are interspersed with the listing of the file.
MetaCALS also can show a frequency of occurrence table for all the
elements in a CGM.

MetaCALS was developed by CGM Technology Software (PO Box 648,
Gales Ferry, CT 06335) for commercial sale. It has been licensed

6

for redistribution and use by the National Institute of Standards
and Technology. It runs on PC-DOS machines and on a variety of
workstations (e.g., VAX/VMS, Unix of various flavors, IBM RS6000)

.

MetaCALS was developed to the CALS CGM/MIL-D-28003 Test
Requirements Document (see section 1.5.1 above), derived from ISO
8632, Parts 1 and 3, and from MIL-D-28003. MetaCALS is not
infallible (although, at present, no errors are known) , but it is
widely used and has been available for over two years in some form
or another.

1.5. 2.

2

CGM-View

CGM-View is a stand-alone utility (i.e., computer program) that
permits one to see on a graphics display screen or on a graphics
hardcopy device a representation of the content of a CGM file. It
serves the Testing Service as a semantic correctness testing tool.

CGM-View was developed by Advanced Technology Center (22982 Mill
Creek Drive, Laguna Hills, CA 92 653) . It runs only on
workstations (e.g., VAX/VMS, Unix of various flavors). It supports
a wide variety of color and black-and-white displays and hardcopy
output devices.

1.6 Overview of the Testing Process

1.6.1 Characteristics of the Generator-under-Test

In Chapter 2, how the Test Service can determine the specific
characteristics of the generator-under-test is explained. A
questionnaire is available, the answers to which indicate the
collection of CGMs that this product is capable of generating. A
software tool has been developed to assist the test service in
building a questionnaire (Appendix B) from a formal description of
the requirements of the standard and the CALS profile (Appendix A)

.

1.6.2 Specifying the CGM Suite-under-Test

In Chapter 3, a methodology for generating a set of specifications
describing the desired CGM suite-under-test is depicted. The
sponsor of the generator-under-test uses these specifications to
prepare his/her native suite and native hardcopy, both of which are
delivered along with the CGM generator-under-test for use by the
CGM Generator Test Service.

1.6.3 Testing the Completeness of the CGM
Suite-under-test

Chapter 4 describes how certain features of MetaCALS are used to
verify that the CGM suite-under-test in fact contains all the CGM
files and elements that were asked for in the test specifications.

7

During this stage, the CGM suite-under-test is produced from the
native suite provided by the client sponsoring the
generator-under-test

.

1.6.4 Testing for Syntactic Correctness

Chapter 5 explains how to use MetaCALS to test the syntactic
correctness of each of the files in the CGM suite-under-test.

1.6.5 Verifying Semantic Correctness

Chapter 6 explains how to use CGM-View and the native hardcopy to
test the semantic correctness of the CGM suite-under-test.

1.6.6 Assembling the Test Report

Finally, in Chapter 7, the results of the various tests are
assembled into a Test Report.

8

2. Gathering Data About the Generator-Under>Test2.1

Determining What can be Produced by the Generator

The Binary Encoding of the CGM standard (ISO 8632, Part 3)

describes the syntax of some 91 elements that can be used by CGM
generators to describe pictures in a device-independent format.
Only a few of these elements are required in all conforming CALS
CGMs that contain a visible image; namely, BEGIN METAFILE, END
METAFILE, BEGIN PICTURE, BEGIN PICTURE BODY, END PICTURE, METAFILE
VERSION, and METAFILE ELEMENT LIST. METAFILE DESCRIPTION is
required for CALS (MIL-D-28003) conformance. In addition, for CALS
conformance, at least one graphical primitive element must also
appear between each BEGIN PICTURE BODY and END PICTURE.

Conversely, a conforming CALS CGM may not include any GDP or
APPLICATION DATA elements and only a certain number of well-defined
ESCAPE elements. Furthermore, a conforming CALS CGM may have
constraints on some of the values of some of the parameters of the
other elements (see section 3.1.1 for a complete checklist).

Most of the other elements and parameter combinations are permitted
in a conforming FIPS 128 or CALS CGM, yet many CGM generators do
not take advantage of the full capabilities of the CGM standard or
the CALS application profile. For example, a generator-under-test
may restrict itself to 16-bit integer VDCs or to color indices in
the range of 0 to 63.

In order to properly and completely verify the conformance of a
generator-under-test, it is necessary to know the range of CGM
elements and parameter settings of those elements that may appear
in any CGM produced (i.e., written) by the generator-under-test.
To gather that information from the sponsor of the
generator-under-test, a software utility has been developed to aid
in this process. This is described in subsequent sections of this
chapter

.

2.1.1 Formal Definition of the FIPS 128 Standard

Appendix A provides a formal definition of the FIPS 128 (CGM)
standard annotated with additional descriptive information. The
language used to express this definition is an extension of the
familiar BNF notation and is described in Appendix B.

The CGM formal description file is a simple ASCII text file and
may be modified using a text editor. Currently, the CGM formal
description file is named cgm.prf.

2.1.2 Generating the Questionnaire

9

A software utility, called cpc, has been developed to read the CGM
formal description and produces a questionnaire that must be filled
out by the sponsor of the CGM generator-under-test. The
questionnaire is represented by a ASCII TeX file, which must be
processed by a TeX compiler to produce an intermediate,
device-independent representation of the questionnaire. Then a
TeX driver is used to produce the final, device-dependent form of
the questionnaire. The version of TeX (known as LaTeX) in current
use runs on PCs. Several drivers are available for the PC version
of LaTeX. The HP Laserjet driver is used for hardcopy, and the PC
screen driver for previewing. Appendix C shows the Questionnaire
as it is generated on an HP LaserJet III printer.

The entire sequence of operations is shown in the following.

(Step 1) From the CGM formal description, generate an ASCII TeX
file containing the text and formatting instructions for
the questionnaire:

cpc -q cgm.prf > cgm.tex

(Step 2) Then invoke LaTeX to convert the TeX source to a
device-independent intermediate form:

latex cgm.tex

This causes the file cgm.dvi to be created.

(Step 3a) Now you may preview the questionnaire on the PC screen:

v cgm.dvi

In this program, q will exit; + and - are used for
zooming in and out on the page; PgUp and PgDn for
previous and next page, respectively; and the arrow keys
for panning over the layed-out page.

(Step 3b) Produce hardcopy on a HP LaserJet 300 dpi laser printer:

dvihplj @lj.cnf /po=prn cgm.dvi

The printed questionnaire derived from the CGM formal
description (listed in Appendix A) is shown in Appendix
C. cpc is written in ANSI C; it was developed on a PC
using Borland Turbo C.

2.1.3 Filling Out the Questionnaire

The questionnaire is sent to the client, who must answer every
question based on his knowledge of what his product (the CGM
generator-under-test) is capable of doing.

10

The answers to the questions drive the specification of the native
suite and the corresponding C6M suite-under-test. This process is
described in the next chapter.

$

11

3. Defining the Client-Specific Test Suite

3.1 Using the Questionnaire Results

The client's written responses are used as input to the next stage
in the process; namely, producing specifications for the sponsor
to follow in assembling his native suite of files formatted in an
application-specific way.

3.1.1 Checking the Answers to the Questionnaire

Before proceeding further with the testing process, the Test
Service should check that the version number in METAFILE VERSION
is correct (currently, it should be version number 1) and that the
required elements are present (see section 1.4.3) . No other manual
checks are worthwhile at this stage if the Test Service is
verifying FIPS 128 Conformance only.

However, if CALS conformance is being tested for, before proceeding
further with the testing process, the Test Service should review
the answers to the questionnaire, looking for obvious violations
of MIL-D-28003, the CALS CGM profile. A checklist of such items
follows:

(a) Verify that the generator-under-test can generate the
CGM Binary Encoding.

(b) Check that the maximum number of NO-OPs does not exceed
32767.

(c) Check that the METAFILE DESCRIPTION is used and that the
proper CALS profile description string (currently,
"MIL-D-28003 /BASIC-1") is contained within the metafile
description string.

(d) Check that only 16-bit INTEGER PRECISION is used.

(e) Check that only 3 2-bit fixed point or 3 2-bit REAL
PRECISION is used.

(f) Check that only 16-bit INDEX PRECISION is used.

(g) Check that only 8-bit and 16-bit COLOUR PRECISION is
used.

(h) Check that only 8-bit and 16-bit COLOUR INDEX PRECISION
is used.

(i) Verify that the font names are drawn from the names
listed in the CALS CGM Profile and that no more than four
font names can appear in the font list simultaneously.

12

(j) Check that the CHARACTER SET LIST contains only a

two-element list; namely, {(0,4/2), (1,4/1)} where 4/2
denotes the hexidecimal value 42 (the ASCII character
"B") and 4/1 denotes the hexidecimal value 41 (the ASCII
character "A")

.

(k) Verify that CHARACTER CODING ANNOUNCER is either 0 or 1,

if this element is used.

(l) Verify that VDC INTEGER PRECISION is either 16-bit or
32-bit precision, if integer VDCs are used.

(m) Verify that VDC REAL PRECISION is either 32-bit floating
point or 32-bit fixed point, if real VDCs are used.

(n) Verify that TRANSPARENCY is always 1, if this element is
used.

(o) Verify that LINE, MARKER, FILL, and EDGE BUNDLE INDEX
values always lie between 1 and 5.

(p) Verify that the LINE TYPE values are restricted to 1-5
plus the special CALS values.

(q) Verify that the MARKER TYPE values are restricted to 1-5.

(r) Verify that TEXT BUNDLE INDEX values are either 1 or 2

.

(s) Verify that the TEXT FONT INDEX values are restricted to
1-4.

(t) Verify that the CHARACTER SET INDEX and ALTERNATE
CHARACTER SET values are restricted to 1 or 2

.

(u) Verify that the HATCH INDEX values are restricted to 1-6
plus the special CALS values.

(v) Verify that the EDGE TYPE values are restricted to 1-5.

(w) Verify that the PATTERN TABLE starting index is
restricted to 1-8 and that the number of rows and columns
are restricted to 1-16.

(x) Verify that the COLOUR TABLE starting index value is
restricted to the range 0-255.

(y) Verify that the action required flag of the MESSAGE
element always has the value "no action required."

13

(z) Verify that the number of colour values that can appear
in a colour array or colour list parameter does not
exceed 1048576 for CELL ARRAY, 2048 for PATTERN TABLE,
or 256 for COLOUR TABLE.

(aa) Verify that the number of points and VDCs that can appear
in parameters for any of the elements cannot exceed 1024.

(bb) Verify that all string elements are limited to a maximum
of 254 characters, except for data records, which are
limited to 32767 characters.

(cc) Verify that no GDP elements can appear.

(dd) Verify that only the CALS-specified ESCAPE elements can
appear

.

3.1.2

Interacting with the Client

If the results of the manual analysis of the answers to the
questionnaire show violations of the CGM standard or deviations
from the CALS CGM application profile, the client should be
informed in writing and no further testing should be performed
until the client fixes the errors and submits a new filled-out
questionnaire

.

3.2

Semi-automatic Generation of the Test Suite Description

Appendix D contains a listing of an ASCII file that has been
assembled to assist in the specification of requirements on the
native suite and the corresponding CGM suite-under-test. This
specification is known as the test suite description. It is
expected that, depending upon the answers to the questionnaire,
one could use a text editor to cut-and-paste the appropriate
paragraphs from this file into a new file, which, when completed,
will contain the specifications needed by the supplier of the
generator-under-test

.

This file has the PC-DOS file name of questans.

3.3 Manual Tuning of the Test Suite Description

The verbal specifications will need to be edited into a coherent
whole and supplemented with requests to generate certain pictures
(called test images), as specified in section 3.4.2 below.
However, only certain generators-under-test will indeed have the
operator controls required to be able to cause the desired CGM
files corresponding to the specified test images to be generated.

3.4 Client Instructions

14

3.4.1 The Test Suite Description

The supplier of the CGM generator-under-test ("client” for short)
is given the test suite description prepared from his/her answers
to the questionnaire. He/she is required to develop a native suite
that, when processed by the generator-under-test, produces a CGM
suite-under-test that meets the requirements stated in the test
suite description.

For each requirement in the test suite description, the client
should be instructed to specify which file or files in the native
suite meet the requirement. This will allow the Test Service to
more easily determine whether the CGM suite-under-test
corresponding to the native suite indeed meets the requirements of
the test suite description.

3.4.2 Test Images

Appendix E contains a collection of test images. These images
check many (but clearly not all) of the myriad possible
combinations of primitive elements and attribute elements.

Vendors should be instructed to try to create native files that
approximate the specified test images as closely as possible using
the intended CGM primitive and attribute element combinations
suggested by the labelling. If the generator-under-test does not
use certain primitives or attributes, vendors should still try to
produce any of the combinations that the generator does use.

The Test Service is aware that some generators-under-test might
not be able to operate in a mode that makes it easy or convenient
to produce images that correspond to the test images. In these
cases, the client should try to supply a representative set of
native files, which, when exported as CGM files by the
generator-under-test, have primitive and attribute combinations
similar to those requested by the test images.

15

4. Checking the Completeness of the Client Package

The items that should be provided by the client sponsoring the CGM
generator-under-test are listed below.

(1) The client product (generator-under-test) and
corresponding users manual or a filled-out form that
authorizes on-site testing by the Test Service,

(2) The native files from which the CGM suite-under-test can
be generated (the native suite)

.

(3) Hardcopy of the expected images corresponding to the
native files from which the CGMs were generated (the set
of native hardcopies)

.

(4) The CGMs meeting the test suite description (the CGM
suite-under-test) . This last item is redundant if the
client product is provided, because the CGM
suite-under-test can be produced from the native suite,
which the client must supply. However, because it is
time-consuming to produce the CGM suite-under-test, it
is useful to have the client do this work in advance.

This chapter discusses how to verify that the client has supplied
a native suite that meets the requirements of the test suite
description. We call this stage "completeness testing" to
distinguish it from syntactic and semantic "correctness testing."

Once a CGM suite-under-test has been assembled (see section 4.1
below) , it is possible to begin to analyze the files with regard
to whether they meet the requirements stated in the test suite
description. However, due to the labor-intensive nature of
completeness testing, it might be prudent to perform the
correctness testing described in chapters 5 and 6 before performing
the remaining actions documented in this chapter.

4.1 Using the Client's Product to Generate the CGM
Suite-Under-Test from the Native Suite

The first step is to produce the CGM suite-under-test. If the set
of native files is not too large and the client
generator-under-test is available, the CGM suite-under-test should
be generated anew, rather than using the CGM suite-under-test
provided by the client. This guarantees that the CGM
suite-under-test corresponds exactly to the version of the
generator-under-test and that no manual "adjustments" were made to
the CGM files after they were produced by the generator-under-test.

16

If the native suite is too large (e.g., hundreds of files), it

would be possible for the Test Service to generate a subset of the
C6M suite-under-test from a random sample of the files comprising
the native suite. The resulting CGM files should be identical to
their corresponding file in the CGM suite-under-test supplied by
the client. If no discrepancies are found after sampling, say 20%
of the total, it is probably justified to proceed and use the CGM
suite-under-test provided by the client rather than to continue to
generate the CGM suite-under-test anew. The Test Service will have
to make this judgment.

4.2 Using the MetaCheck Frequency Information

Many requirements reduce to the statement, "At least x but not more
than y percent of the files shall contain an instance of z

element." Consequently, element frequency count data is needed
for each file in the CGM suite-under-test.

This information is provided by MetaCheck running at level 1 trace
(i.e. , with the -11 switch on the command line invoking MetaCheck)

.

When the -s switch is also used, the resulting element frequency
count information is routed to a file, whose name is given with the
switch

.

By looking at the element frequency count information for each
requirement in the test suite description, a test service operator
can determine whether the files listed by the client indeed meet
that requirement.

For some requirements, it might be more efficient to combine all
the frequency count information for all the files in the CGM
suite-under-test into a single file. Then, simple utilities (e.g.,
using sed and grep under UNIX) can be used to count the number of
instances of each element over the whole CGM suite-under-test.

4.3 Using the MetaCheck Tracing Facility for Verifying The
Inclusion of Required Metafile Descriptor, Picture
Descriptor, and Control Element Parameter Combinations

Other requirements in the test suite description require
examination of the parameter settings of certain CGM elements. A
MetaCheck level 3 trace provides sufficient information to
determine whether the files indicated by the client indeed contain
the various element parameter data required by the test suite
description. If the -t switch is used in addition to the -13
switch, the trace information is routed into a separate file, where
the data can be analyzed by other programs, custom-written by the
test service to look for certain items of information. Again, UNIX
tools like sed and grep are probably adequate for this purpose.

A final set of requirements in the test suite description specify
that a certain number of points, color indices, and the like appear

17

in specified elements. In this case, it is necessary to examine
the element length counts in the element header and calculate
whether the proper number of parameters are present.
Alternatively, one can use MetaCheck at trace level 4; MetaCheck
then counts the parameters for you. However, this last approach
can result in very large trace files.

4.4 Using the MetaCheck Tracing Facility for Verifying The
Inclusion of Required Primitive and Attribute Element
Parameter Combinations

The files from the CGM suite-under-test corresponding to the test
images should be analyzed with MetaCheck using the level 3 to
verify that the expected elements are present and that the expected
attribute settings are used at the appropriate times. This is
labor intensive work that might be alleviated by writing an
appropriate set of tools that would scan the trace output looking
for the proper sequence of elements and parameter settings.

18

5. Checking the Syntactic Correctness of the Client-Supplied CGNs

Once the completeness of the CGM suite-under-test is established,
the test service can proceed to determine if the CGMs are correct.
This chapter focuses on syntactic correctness; the next chapter on
semantic correctness.

In fact, it is possible to defer the completeness testing
documented in Chapter 4 until after it is determined that all the
files in the CGM suite-under-test are both syntactically and
semantically correct. This is a decision for the test service.
Eventually completeness testing will have to be accomplished, but
due to its labor-intensive nature, it might be prudent to perform
completeness testing only on CGM suites-under-test that are known
to be syntactically and semantically correct.

5.1 Running CTS/MetaCheck

MetaCheck is invoked from a command line. By default (at trace
level 0) a conformance report is routed to the standard output
device. This report can be redirected to a file and examined by
software utility programs.

The CTS/MetaCheck version 2 user's manual gives complete operating
instructions.

5.1.1 Checking for FIPS 128 Syntactic Correctness

By default, MetaCheck looks only for FIPS 128 conformance, so there
is no special process to be followed to obtain this result.

5.1.2 Checking for CALS MIL-D-28003 Syntactic
Correctness

By including the -reals switch on the command line, MetaCheck is
directed to look for conformance to the CALS MIL-D-28003
application profile. The conformance report produced distinguishes
between FIPS 128 (CGM) errors and CALS application profile errors.

5.2 Understanding the Error Reports

The error reports are self-explanatory and fully explained in the
CTS/MetaCheck users manual. Providing these reports directly to
the client should be sufficient for documenting the test service
results.

5.3

Understanding the Warning Advisories and Bulletins

CTS/MetaCheck has the ability to look for "unusual" usage of the
CGM. Although not syntactically incorrect, these elements might

19

indicate a semantic problem (e.g., POLYLINES with all the points
the same) with the generator-under-test. To direct MetaCheck to
look for these kinds of potential problem areas, use the -w switch
on the command line.

However, remember that these warnings and bulletins are not
syntactic errors! They are merely indicators that there could be
a problem with the semantics of the CGM-under-test . This warning
reporting feature of MetaCheck must be used with care by any test
service. In general, the warnings and bulletins should not be
included in a test report. Instead, if the warning or bulletin is
indicative of a real semantic problem, then that problem should be
described directly, without alluding to the warning signal provided
by MetaCheck.

5 . 4 Documenting Discrepancies

It should be sufficient to provide the client with a copy of the
level 0 trace output for each file in the CGM suite-under-test that
contains a syntactic error. The test service could also provide
a level 4 trace of the element or group of elements that were in
error

.

20

6. ChecXing the Semantic Correctness of the Client-Supplied CGMs

Once the CGM suite-under-test has been determined to be
syntactically correct, the Test Service can go on to check for
semantic correctness.

As explained in Chapter 1, the general approach is to compare the
view of the native file as displayed by the client application with
the view of the corresponding CGM file as displayed by the utility
program CGM-View.

e.l Comparing Native Hardcopy with CGM Hardcopy

Ideally, both the client application and CGM-View can be installed
on the same workstation, which is able to support multitasking and
a windowed user interface. The client application should then be
run in one window, while CGM-View runs in a second window.
Initially, the windows should be placed so that they do not
overlap. Then, the client application is made to display a native
file from the native suite (producing the native hardcopy) while
CGM-View displays the corresponding CGM file from the CGM
suite-under-test (producing the CGM hardcopy) . The visual
appearances of the two displays are then compared visually by Test
Service personnel.

In less than these ideal conditions, other configurations are also
acceptable. These are described in the following paragraphs:

(A) Problem : The client application cannot run on the
CGM-View workstation (e.g., the application is a PC
product only)

.

Solution : The client application is run on a different
machine, whose monitor is placed side-by-side with the
CGM-View workstation monitor. It is important to try to
have the general graphics capabilities of the application
machine and the CGM-View workstation be as similar as
possible (especially in their color palette capabilities,
resolution, and monitor size)

.

(B) Problem : The client application has no softcopy (screen
display) capability.
Solution : Use the native hardcopy provided by the client
to substitute for the real-time generation of native
hardcopy used in the ideal testing situation.

(C) Problem : The client application runs on a machine that
is not available to the Test Service.
Solution : Perform semantic testing at the client's site.
If the client has a machine on which CGM-View can be run.

21

this situation resembles alternative (A) above. If not,
this situation resembles alternative (B) , but in this
case, the native hardcopy can be displayed in real-time,
while the CGM hardcopy must be prepared in advance by the
Test Service and brought to the client site.

6.2 Understanding Visual Differences

Clearly, the effectiveness of this testing depends upon the Test
Service operator's ability to notice differences between the
corresponding native hardcopy and CGM hardcopy. These differences
can be attributed to four major sources:

(a) Errors of the CGM aenerator-under-test . These need to
be documented and reported to the client as part of the
Test Report (see section 6.4);

(b) Errors in CGM-View . These need to be documented and
reported to ATC, the developer of CGM-View. In these
cases, alternative candidate reference interpreters can
be used (if available) to provide the CGM hardcopy.
Also, it might happen that CGM-View only makes an error
on its screen display, but that other display paths
(e.g. , to a color printer) work correctly. In these
cases, the CGM hardcopy used by the Test Service need
not be the screen display but any other form of hardcopy
correctly produced by CGM-View.

(c) Documented inadecmacies of CGM-View . In these cases, as
with case (b)

,

it might be possible to find alternative
candidate reference interpreters which do handle the
CGMs-under-test in question. However, if no candidates
can be found, either the Test Service has to skip the
test or it can attempt to use the full trace capability
of MetaCheck to view the contents of the CGM file and use
"intellectual" methods to determine whether the given CGM
file indeed appears to reflect the intended picture
appropriate for the corresponding native file.

(d) Differences in hardware environment . A picture intended
for a color prepress application might use a color table
with several hundreds of entries. Both the client
application and CGM-View might be running on systems with
the ability to display only, say, 64 or 256 colors
simultaneously. In this case, neither the native
hardcopy nor the CGM hardcopy will reflect exactly the
information contained in the native file or in the
corresponding CGM file. Furthermore, the algorithms used
by the client application and CGM-View to map the large
number of colors requested to the smaller number of
colors available are probably not identical. Other

22

possible sources of allowed visual discrepancies are
listed in section 6.3, below.

6.3 Allowed Visual Discrepancies

The sources of allowed visual discrepancies are varied. Annex D
of FIPS 128 contains a fairly complete discussion of the issues.
A summary list of the topics covered in Annex D is provided in the
following paragraphs:

(a) Handling of geometrically degenerate primitives. These
include line elements of zero length, filled-area
elements of zero area (degenerating either to a line or
to a point) , and CELL ARE^Y elements of zero area.

(b) Mapping of out-of-range indices.

(c) Support for direct color on hardware that is inherently
color-mapped (that is, uses indexed color)

.

(d) Mapping from the specified color precision in the CGM to
the available color precision on the Test Service
hardware

.

(e) Whether BEGIN PICTURE BODY causes the view surface to be
cleared to the background color.

(f) How AUXILIARY COLOUR is interpreted if this capability
is not supported by the Test Service hardware.

(g) How clipping is implemented when any part of the CLIP
RECTANGLE is outside the VDC EXTENT.

(h) Whether kerned fonts lie entirely within the RESTRICTED
TEXT bounding parallelogram.

(i) How CIRCULAR ARC and ELLIPTICAL ARC primitives are
rendered when the start ray and end ray coincide.

(j) The exact appearance of the standardized LINE TYPES might
vary both due to the algorithm used and to differing
resolutions used for native hardcopy and CGM hardcopy.

(k) The exact appearance at joins (where line segments meet)
in a POLYLINE element.

The realization of LINE WIDTH.

The exact appearance of the standardized MARKER TYPES.

The realization of MARKER SIZE.

(1)

(m)

(n)

23

(o) The handling of TEXT PRECISION. It is permissable to
approximate both string and character text by stroke
text. This could lead to quite different appearances.

(p) The exact realization of other text attributes like TEXT
ALIGNMENT, CHARACTER EXPANSION FACTOR, CHARACTER SPACING,
CHARACTER ORIENTATION, and CHARACTER HEIGHT is affected
by the resolution of the output device.

(q) The mapping between the font names placed in the CGM file
(if any) and the font names available through CGM-View
or any other reference interpreter. It is likely that
there will not be a match either in font metrics or in
typeface appearance.

(r) The exact realization of the standardized hatch indices.

(s) The exact appearance of the standardized EDGE TYPES might
vary both due to the algorithm used and to differing
resolutions used for native hardcopy and CGM hardcopy.

(t) The exact appearance at joins (where edge segments meet)
in a POLYGON or POLYGON SET element with edge visibility
on.

(u) The realization of EDGE WIDTH.

(v) Any realization of GDP, ESCAPE, and APPLICATION DATA
elements.

(w) Any appearance and behavior of the MESSAGE element.

6 . 4 Documenting Discrepancies

All discrepancies should be noted and documented, although only
type (A) discrepancies should appear in the Test Report.

Ideally, discrepancies should be documented by saving physically
permanent versions of the native hardcopy and the corresponding
CGM hardcopy, along with the native file and CGM file. This would
require that the Test Service have access to a reasonably
high-quality color output device, capable of rendering at least
256 colors simultaneously on standard and medium-sized paper (A
and B or C) and with sufficient resolution to show small
differences between plots.

In addition, because CGM-View is not yet a certified reference
interpreter, it will be necessary to investigate all apparent
discrepancies to determine which category they fall under. The
principal methods available are two:

24

(1) Use MetaCheck to get a full trace of the file. Examine
the trace file and "hand simulate" the behavior of an
ideal CGM reference interpreter. Compare the results
with the native hardcopy. If they differ, there is an
error in the CGM generator-under-test . Warning: For
some client applications, even the native hardcopy might
not represent accurately the application user's
intention! In these cases, it is extremely labor
intensive to become fully conversant with the total
capabilities of the client application and to determine
where the source of the visual differences is coming
from.

(2) Acquire one or more other CGM reference interpreters and
compare their results with the CGM hardcopy. If all the
reference interpreters agree, it is likely that the fault
lies with the client application (the
generator-under*-test) . This method is known as the
"Delphi method."

Depending upon the subtlety of the error made by the
generator-under-test, it can be extremely costly to find its actual
source

.

25

7. Assembling the Test Report

The Test Report will be designed by NIST in accordance with the
experience with GKS and PHIGS testing and based on NIST accepted
practice. The following sections provide an overview of the major
testing results that need to be included in the Test Report. These
results are in addition to supporting documentation, such as a
description of the client application (the CGM
generator~under-test) , a copy of the filled-out client
questionnaire, a copy of the test suite description, and the
client's documentation of how his submitted native suite satisfies
the requirements of the test suite description.

7 . 1 Package Completeness

The results of the testing described in Chapter 4 is documented in
this section. The major resources are the frequency reports and
element traces produced by MetaCheck.

7.2 Syntactic Correctness

The results of the testing described in Chapter 5 is documented in
this section. The major resources are the conformance reports
produced by MetaCheck.

7 . 3 Semantic Correctness

The results of the testing described in Chapter 6 is documented in
this section. The major resources are the native hardcopies and
CGM hardcopies produced by the client application and CGM-View,
respectively

.

7.4 Registration of Report by NIST

The drafting, review, finalization, and registration of the report
by NIST will follow guidelines developed and published by NIST.

26

APPENDIX A

FORMAL DESCRIPTION OF CGM

27

%
"constraints" := {

"ENCODING" := { "binary", "character", "clear text" }

"MAX_STRING_LENGTH":= { * } % ASSUMED TO BE UNIQUE FOR ALL STRINGS !

"MAX_POINTS";= { * } % ASSUMED TO BE UNIQUE FOR ALL POINT LISTS
I

"MAX_NOPS":= { * }

"VALID_CHARACTERS":= { * }

}

%
"macro definitions" := {

"device dependent background colour" :={ <0,0, 0> }

"device dependent foreground colour" :={ <1,1, 1> }

"standard string type":= {

"MAX_STRING_LENGTH"

,

"VALID_CHARACTERS

"

}

"LINE_ATTRIBUTES":= {

"ATTRIBUTES" := {

"LINE BUNDLE INDEX",
"LINE TYPE",
"LINE WIDTH",
"LINE COLOUR"

}

}

"MARKER_ATTRIBUTES":= {

"ATTRIBUTES" := {

"MARKER BUNDLE INDEX",
"MARKER TYPE",
"MARKER SIZE",
"MARKER COLOUR"

}

}

28

"TEXT_ATTRIBUTES”;= {

"ATTRIBUTES” := {

"TEXT BUNDLE INDEX",
"TEXT FONT INDEX",
"TEXT PRECISION",
"TEXT COLOUR",
"TEXT PATH",
"TEXT ALIGNMENT",
"CHARACTER EXPANSION FACTOR",
"CHARACTER SPACING",
"CHARACTER HEIGHT",
"CHARACTER ORIENTATION",
"CHARACTER SET INDEX",
"ALTERNATE CHARACTER SET INDEX"

}

}

"FILL_ATTRIBUTES":= {

"ATTRIBUTES" := {

"FILL BUNDLE INDEX",
"FILL COLOUR",
"FILL REFERENCE POINT",
"INTERIOR STYLE",
"HATCH INDEX",
"PATTERN INDEX",
"EDGE BUNDLE INDEX",
"EDGE WIDTH",
"EDGE TYPE",
"EDGE COLOUR",
"EDGE VISIBILITY",
"PATTERN TABLE",
"PATTERN SIZE",
"COLOUR TABLE"

}

}

}

%
"delimiter elements" := {

"NO-OPERATION" ;= { "MAX_NOPS" }

"BEGIN METAFILE" := {

"STRING" := { "USAGE" := ["sometimes"] { "always",
"standard string type"

}

}

"END METAFILE" := { }

"never" }

,

29

"BEGIN PICTURE" := {

"MAX_PICTURES":= { 32 }

"STRING" := { "USAGE" := ["sometimes"] { "always", "never" },
"standard string type"

}

}

"BEGIN PICTURE BODY":= { }

"END PICTURE" := { }

%
"metafile descriptor elements" := {

"METAFILE VERSION" := {
*

"METAFILE DESCRIPTION" :

=

"STRING" := { "USAGE" :=

"standard
}

}

>

{

["sometimes"
string type"

"always", "never" },

"VDC TYPE":= ["integer"] { "real" }

"INTEGER PRECISION" := [16] { 8 , 24 , 32 }

"REAL PRECISION":= % before: (0,9,23), (0,12,52), (1,16,16),
(1,32,32)

{ "32-bit floating point" } ["32-bit fixed point"]

{ "64-bit floating point" } { "64-bit fixed point" }

"INDEX PRECISION" := [16] { 8 , 24 , 32 }

"COLOUR PRECISION" := [8] { 16 , 24 , 32 }

"COLOUR INDEX PRECISION" := [16] { 8 , 24 , 32 }

"MAXIMUM COLOUR INDEX" := [63] { * }

"COLOUR VALUE EXTENT":= [<0 , 0 , 0> . . <255 , 255 , 255>]

{ <*,*,*>..<*,*,*> }

"METAFILE ELEMENT LIST":= { "Drawing set", "Drawing-plus-control set" }

"METAFILE DEFAULTS REPLACEMENT" :

=

"VDC TYPE",
"INTEGER PRECISION",
"REAL PRECISION",

30

INDEX PRECISION",
COLOUR INDEX PRECISION",
COLOUR VALUE EXTENT",
CHARACTER CODING ANNOUNCER",
SCALING MODE",
COLOUR SELECTION MODE",
LINE WIDTH SPECIFICATION MODE",
MARKER SIZE SPECIFICATION MODE",
EDGE WIDTH SPECIFICATION MODE",
VDC EXTENT",
BACKGROUND COLOUR",
VDC INTEGER PRECISION",
VDC REAL PRECISION",
AUXILIARY COLOUR",
TRANSPARENCY"

,

CLIP RECTANGLE",
CLIP INDICATOR",
LINE BUNDLE INDEX",
LINE TYPE",
LINE WIDTH",
LINE COLOUR",
MARKER BUNDLE INDEX",
MARKER TYPE",
MARKER SIZE",
MARKER COLOUR",
TEXT BUNDLE INDEX",
TEXT FONT INDEX",
TEXT PRECISION",
CHARACTER EXPANSION FACTOR",
CHARACTER SPACING",
TEXT COLOUR",
CHARACTER HEIGHT",
CHARACTER ORIENTATION",
TEXT PATH",
CHARACTER SET INDEX",
ALTERNATE CHARACTER SET INDEX",
FILL BUNDLE INDEX",
INTERIOR STYLE",
FILL COLOUR",
HATCH INDEX",
PATTERN INDEX",
EDGE BUNDLE INDEX",
EDGE TYPE",
EDGE WIDTH",
EDGE COLOUR",
EDGE VISIBILITY",
FILL REFERENCE POINT",
PATTERN TABLE",
COLOUR TABLE",
ASPECT SOURCE FLAGS"

31

"FONT LIST":= { "MAX_NAMES":= { * },
"MAX_NAME_LENGTH":= { * },
"NAMES" := { "HERSHEY:*" }

}

"CHARACTER SET LIST":= {

"MAX_CHARACTER_SETS":= { * },
"MAX_CHARACTER_SET_LENGTH" : = { * },
"CHARACTER_SET_TYPE":= { "94-character G-set",

"96-character G-set",
"94-character multibyte G-set",
"96-character multibyte G-set",
"complete code" }

,

"SEQUENCE TAIL":= {
"*"

}

}

"CHARACTER CODING ANNOUNCER" :=

["7-bit basic"]

{ "8-bit basic",
"7-bit extended",
"8-bit extended" }

"picture descriptor elements" := {

"SCALING MODE":= {

"MODE":= ["abstract"] { "metric" },
"METRIC_SCALE_FACTOR":= { *.* },
"PRECISION" ;= ["32-bit fixed point"]

}

"COLOUR SELECTION MODE":= ["indexed"] { "direct" }

"LINE WIDTH SPECIFICATION MODE":= { "absolute" } ["scaled"]

"MARKER SIZE SPECIFICATION MODE":= { "absolute" } ["scaled"]

"EDGE WIDTH SPECIFICATION MODE":= { "absolute" } ["scaled"]

"VDC EXTENT" := {

"INT_AREA":= [<0 , 0> .. <32767 , 32767>] { <*,*>..<*,*> }

"REAL_AREA" := [<0 . 0 , 0 . 0> . . <1 . 0 , 1 . 0>] { <*.*,*.*>..<*.*,*.*> }

}

"BACKGROUND COLOUR" := ["device dependent background colour"]

{ <*,*,*> }

32

%

"control elements" := {

"VDC INTEGER PRECISION" := [16] { 24, 32 }

"VDC REAL PRECISION" :=

{ "32-bit floating point" } ["32-bit fixed point"]

{ "64-bit floating point" } { "64-bit fixed point" }

"AUXILIARY COLOUR" := {

"INDEXED" ;= [0] { * },
"DIRECT" := ["device dependent background colour"] { <*,*,*> }

"TRANSPARENCY" := ["on"] { "off" }

"CLIP RECTANGLE" := ["VDC EXTENT"]

{ "INT_AREA":= { <*,*>..<*,*> }

"REAL_AREA":= { <*.*,*.*>..<*.*,*.*> }

}

"CLIP INDICATOR" ;= ["on"] { "off" }

}

%
"graphical primitive elements" := {

"POLYLINE" :=

}

"LINE_ATTRIBUTES"

,

"MAX POINTS"

"DISJOINT POLYLINE" :=

}

"LINE_ATTRIBUTES"

,

"MAX POINTS"

"POLYMARKER" :

=

}

"LINE_ATTRIBUTES"

,

"MAX POINTS"

"TEXT":= {

"TEXT_ATTRIBUTES"

,

"standard string type",
"TEXT_FLAG":= { "final", "non-final" },
"ALLOW_CHANGE" : = { "TEXT FONT INDEX",

"CHARACTER EXPANSION FACTOR",
"CHARACTER SPACING",
"TEXT COLOUR",
"CHARACTER HEIGHT",
"CHARACTER SET INDEX"

}

}

33

"RESTRICTED TEXT":= {

"TEXT_ATTRIBUTES"

,

"standard string type",
"TEXT_FLAG":= { "final", "non-final" },
"ALLOW_CHANGE":= { "TEXT FONT INDEX",

"CHARACTER EXPANSION FACTOR",
"CHARACTER SPACING",
"TEXT COLOUR",
"CHARACTER HEIGHT",
"CHARACTER SET INDEX"

}

}

"APPEND TEXT":= {

"TEXT_ATTRIBUTES"

,

"standard string type",
"TEXT_FLAG":= { "final", "non-final" },
"ALLOW_CHANGE":= { "TEXT FONT INDEX",

"CHARACTER EXPANSION FACTOR",
"CHARACTER SPACING",
"TEXT COLOUR",
"CHARACTER HEIGHT",
"CHARACTER SET INDEX"

}

}

"POLYGON" :=

}

"FILL_ATTRIBUTES"

,

"MAX POINTS"

"POLYGON SET":= {

"FILL_ATTRIBUTES"

,

"MAX_POINTS"

,

"EDGE_OUT_FLAG":= { "invisible", "visible",
"close/invisible" , "close/visible"

}

}

"CELL ARRAY" := {

"MAX_COLUMNS":= { * },
"MAX_ROWS";= { * },
"LOCAL_COLOUR_PRECISION":= { 0, 1, 2, 4, 8, 16, 24, 32 },
"LIST_MODE" := { "run-length", "packed" }

}

"GENERALIZED DRAWING PRIMITIVE" := {

"ID":= { * },
"MAX_DATA_RECORD_LENGTH":= { * }

}

"RECTANGLE" := { "FILL_ATTRIBUTES" }

34

"CIRCLE" := { "FILL_ATTRIBUTES" }

"CIRCULAR ARC 3 POINT" := { "LINE_ATTRIBUTES" }

"CIRCULAR ARC 3 POINT CLOSE" := {

"FILL_ATTRIBUTES"

,

"CLOSURE" := { "pie", "chord" }

}

"CIRCULAR ARC CENTRE" := { "LINE_ATTRIBUTES" }

"CIRCULAR ARC CENTRE CLOSE" := {

"FILL_ATTRIBUTES"

,

"CLOSURE" := { "pie", "chord" }

}

"ELLIPSE" := { "FILL_ATTRIBUTES" }

"ELLIPTICAL ARC":= { "LINE_ATTRIBUTES" }

"ELLIPTICAL ARC CLOSE" := {

"FILL_ATTRIBUTES"

,

"CLOSURE" := { "pie", "chord" }

}

}

%

"attribute elements" := {

"LINE BUNDLE INDEX" := [1] { 1..5 }

"LINE TYPE";= (*..-1) [13{1..5}
"LINE WIDTH" := {

"ABSOLUTE" := [
.

] { *.* },
"SCALED" :={1.0} {*.*}

}

"LINE COLOUR" := {

"INDEXED" := [1] { * }/
"DIRECT" := ["device dependent foreground colour"] { <*,*,*> }

}

"MARKER BUNDLE INDEX" := [1] { 1..* }

"MARKER TYPE":= (*..-1) [3]{1..5}
"MARKER SIZE":= {

"ABSOLUTE" := [
.] { *.* },

"SCALED" := [1.0] { *.* }

}

35

"MARKER COLOUR" := {

"INDEXED" := [!]{*},
"DIRECT" := ["device dependent foreground colour"] { <*,*,*> }

}

"TEXT BUNDLE INDEX" := [1] { 1..* }

"TEXT FONT INDEX" := [1] { 1..* }

"TEXT PRECISION" := ["string"] { "character", "stroke" }

"CHARACTER EXPANSION FACTOR" := [1.0] { 0.0..*.* }

"CHARACTER SPACING" := [0.0] { 0.0..*.* }

"TEXT COLOUR" := {

"INDEXED" := [1] { * },
"DIRECT" := ["device dependent foreground colour"] { <*,*,*> }

}

"CHARACTER HEIGHT" := { *.* }

"CHARACTER ORIENTATION" : = {

"UP_VECTOR" : = [<0.0,1.0>] { <*.*,*.*> },
"BASE_VECTOR":= [<1.0,0.0>] { <*.*,*.*> }

}

"TEXT PATH":= [
"

"TEXT ALIGNMENT":
"HORIZONTAL" :=

"VERTICAL" :=

right"] {

= {

["normal"
{ "left",
["normal"
{ "top", "

"left", "up", "down" }

]

"centre", "right", "continuous horizontal" }

]

cap", "half", "base", "continuous vertical" }

}

"CHARACTER SET INDEX" := [1] { 1..* } % ???, see CHARACTER SET
LIST

"ALTERNATE CHARACTER SET INDEX" :=[1]{1..*} % see CHARACTER SET LIST

"FILL BUNDLE INDEX":

"INTERIOR STYLE" := (

[

{

[1 3 { 1..* }

« *)

"hollow"]

"solid", "pattern". "hatch"

,

"empty" }

36

"FILL COLOUR" := {

"INDEXED" := [1] { * }/
"DIRECT" := ["device dependent foreground colour"] { <*,*,*> }

}

"HATCH INDEX" := (*..-1) [1] {1..6}

"PATTERN INDEX" := [1] { 1..* }

"EDGE BUNDLE INDEX" := [1] { 1..5 }

"EDGE TYPE":= (*..-1) [1] {1..5}

"EDGE WIDTH" := {

"ABSOLUTE" := [
.

] { *.* },
"SCALED" := [1.0] { *.* }

}

"EDGE COLOUR" := {

"INDEXED" := [1] { * }/
"DIRECT" := ["device dependent foreground colour"] { <*,*,*> }

}

"EDGE VISIBILITY" := { "on" } ["off"]

"FILL REFERENCE POINT" := {

"INT_POINT":= [<*,*>] { <*,*>
"REAL_POINT" := [<*.*, *.*>

] { <*.*, *.*> }

}

"PATTERN TABLE" := {

"INDEX" := [1] { 1..*
"COLUMNS" := [1] { 1..*
"ROWS" :=[1] {1..*},
"LOCAL_COLOUR_PRECISION":= { 0, 1, 2, A, 8, 16, 24, 32
}

"PATTERN SIZE":= {

"HEIGHT_VECTOR" : = [<0.0,*.*>] { <*.*,*.*> },
"WIDTH_VECTOR" :=

[
<*.*,0.0>

] { <*.*,*.*> }

}

"COLOUR TABLE" := {

"MAX_SIZE":= [255] { * },
"INDEX" :=

}

[0. .255] { 0. .* }

37

"ASPECT SOURCE FLAGS" := {

"LINE TYPE",
"LINE WIDTH",
"LINE COLOUR",
"MARKER TYPE",
"MARKER SIZE",
"MARKER COLOUR",
"TEXT FONT INDEX",
"TEXT PRECISION",
"CHARACTER EXPANSION FACTOR",
"CHARACTER SPACING",
"TEXT COLOUR",
"INTERIOR STYLE",
"FILL COLOUR",
"HATCH INDEX",
"PATTERN INDEX",
"EDGE TYPE",
"EDGE WIDTH",
"EDGE COLOUR"

}

}

%
"escape elements" := {

"ESCAPE" := {

"ID":= { * },
"VALID_CHARACTERS":= { * },
"MAX_DATA_RECORD_LENGTH" : = { * }

}

}

%

"external elements" ;= {

"MESSAGE" := {

"ACTION_FLAG" := { "no action", "action" }

"MAX STRING LENGTH" := { * }

"APPLICATION DATA":= {

"ID":= { * },
"MAX_DATA_RECORD_LENGTH":= { * }

}

}

38

APPENDIX B

C6M FORMAL DESCRIPTION GRAMMAR

39

B . 1 Background

Some aspects of a profile can be specified very easily using a
formalism whereas other aspects cannot. This can be illustrated
by having a brief look at some of the aspects of a formal
description:

* Existence: since it is not required to support all CGM
elements defined by the standard, a formal description must contain
information about which elements are supported. Note that the
presence of a number of CGM elements is mandatory.

* Characteristics: an element usually contains some
characteristics, like a mode in which an element can be used.
Modes may be enumerated whereas other characteristics may be
specified in a different way (see below) . In a more general way
characteristics tell something about the behavior of the associated
elements.

* Limits: for some values associated with a particular element
there may exist upper or lower bounds. For example in most
applications there exists a maximum number of characters for
strings. Note that this kind of information is more a
characteristic of a characteristic than a characteristic of an
element and, therefore, at another level. It becomes obvious that
characteristics specified in a formal description are more
hierarchical than linear.

* Ranges: if there exists an upper and a lower bound and every
value in between these bounds is a possible value, a range can be
specified. In practice, a limit can be expressed as a special case
of a range, where, for example, the upper bound is set to the limit
and the lower bound is allowed to be every value below the upper
bound

.

* Enumerations: if there is no order in a set of values, the
set can be enumerated element by element. If there is an ordered
set, and at least some of the possible values are consecutive,
ranges can be used as an item of an enumeration.

* Defaults: some characteristics, like the line type, have a
default value, when no assignment is made by the CGM generator.
Default values are encoding specific and must be defined in the
formal description.

* Heuristics: several features of an application cannot be
specified in an easy way, because no assumptions about their
characteristics can be made. An example is the setting of a color
map: depending on the requirements of the application, different
settings may be desired. The difficulty in finding a uniform
specification scheme is illustrated by the following examples:

40

* a set of k colours should be arranged in a colour table
with n entries (k <= n) in a way, that an arbitrary sequence of
the k colours occurs periodically in the colour table.

* given the numbers k, 1 and m, with k+l+m=n, the color
map should contain k, 1 and m entries of the colours C(k)

,

C(l)

,

and C(m) (varying in brigthness and saturation)

.

* an arbitrary color map should be forced to be ordered by
a certain criteria, e.g., brightness.

* Global information: some information describes a feature of
the application rather than a specific CGM element. An example is
the encoding (character, binary or clear text) method, which is
supported by the application.

The aspects mentioned above can be described independently from
each other within a formal description. But since some CGM
elements belong to more than one category, they must be described
under several aspects. For example, if one first enumerates all
the elements supported by the application and then defines the
attributes of each of the elements in a separate step and so on,
one will end up with an extremely redundant specification. Since
redundant definitions are not only tedious, but also error-prone,
the goal is to minimize the redundancy inherent in the grammar
developed here. Therefore, each CGM element is described as a
unit, using a notion that implies the definition of the element:

<ELEMENT> := <ELEMENT NAME> ' :=' '{' <VALUES>*
[
<ELEMENT>*

Elements are:

* The 91 CGM elements as specified in ISO 8632, Part 3.

* Attributes, whose values are to be specified.

* Constraints, which are valid for the entire formal
description, e.g., the maximum number of points in a point
list '•MAX_POINTS".

* Macros, whereupon each occurrence of the macro-name (except
its definition) is replaced by the text given by its
definition. Macros are allowed to be nested as long as
recursion, either direct or indirect, is avoided.

41

since an element has chaxacteristics, which, in turn, can have
different characteristics for itself, a recursive structure is
appropriate. For example, the element METAFILE DESCRIPTION is
associated with a string specifying the content of the metafile or
a description of the product that generated the metafile. A string
can have several characteristics, too; e.g., a maximum length or
a required substring and so on. Therefore, the definition of
<ELEMENT> builds a tree. Note that each <ELEMENT> is defined by
<VALUES>* or <ELEMENT>* exclusively.

B.2 Principles

A formal description is a set of elements:

<FORMAL DESCRIPTION> := <ELEMENT>*

A basic value is called an atom. Since there are different modes
in which an atom can be the value of an element, there are
different modes of its specification. An atom can specify the
standard values which are allowed for a specific element, default
values, or values which are not defined by the CGM standard
(private use of elements)

:

<VALUES> := { <PRIVATE>
j
<DEFAULT>

[
<STANDARD> }

The three modes are distinguished by the use of different brackets
symbols to enclose a set of atoms:

<PRIVATE> := '(' <ATOM>* ')•

<DEFAULT> := •[' <ATOM>* ']'

<STANDARD> := '{• <ATOM>*

Note that the default value does not have to be repeated in the
list of standard values.

There is no specific order in which private, default and standard
values must occur; that is, they can be mixed up.

Since different separators can be used, the appearance of an
element definition can be designed in a fashion that is appropriate
to the characteristic in question. Consequently, the following
descriptions are equivalent:

{'a', 'b', 'c'} = {'a' 'b' 'c'} = {•a'},{'b'},{'c'} = {•a'}{'b'}{'c'}

42

For example, when enumerating some values (including a range)

,

then:
{ -303. .-301, 1..5 }

is more readable as an atom than

{ -303. .-301 }, { 1..5 }

An atom is what it implies; namely, a character, a string, a
number, an RGB value, a point with integer coordinates, or a point
with real coordinates. Since RGB values and points are compound
types, ranges of values are treated as atoms, too:

<ATOM> := <CHARACTER>
j
<STRING>

|
<NUMBER>

|
<RGB>

|
<POINT>

\

<RANGE>

The non-terminal symbols described by the preceding rules are:

<CHARACTER>
<STRING>
<NUMBER>
<RGB>
<P0INT>
<RANGE>

<INTEGER>
<REAL>

""<LETTER>""
I
<NUMBER>

' ” '<LETTER>* ' ”

'

<INTEGER>
!
<REAL>

'<• <INTEGER> <INTEGER> <INTEGER> '>'

'<• <NUMBER> <NUMBER> '>'

<NUMBER> ' .
.

' <NUMBER>
j

<LETTER> ' .
.

' <LETTER>
[•+•

I '-•]<DIGIT>+
[[•+'!•-'] <DIGIT>+] '

.
' <DIGIT>+

[[•+'|'-']'e'i'E'| <DIGIT>+]

The terminal symbols are:

<DIGIT> C

{ •O' . . 191
>

<LETTER> • ^
{ 'a' .

.

•z'

,

•A' . . •Z', •O' . . • gi
1 1

9
t 1

9
1 . 1

/ f

') \ 1 1 1 1 1 1 1 1 II 1

9 9 • / r

1 1

9
'%' }

Note that all enumerations, such as element definition, atoms or
even the components of a RGB value or the coordinates of a point
can be separated either by a blank or by a comma.

Since not every character can be specified by an editor, characters
are allowed to be specified by the corresponding ASCII code number.

43

B.3 An Example

Some of the mechanisms are illustrated by the following example:

"constraints” := {

"MAX_STRING_LENGTH" := { 256 }

"VALID_CHARACTERS" ;= { 'a'..'z', '0'..'9'
}

}

"macro definitions" := {

"standard string type"

}

{ "MAX_STRING_LENGTH"

,

"VALID_CHARACTERS" }

"delimiter elements" := {

"BEGIN METAFILE" := {

"STRING" := { "standard string type",
"USAGE" := ["sometimes"] { "always", "never"

"SUB_STRING" := { "example" }

}

}

}

It can be seen that some items are written in upper case and some
in lower case. By convention the names of CGM elements (e.g.

,

"BEGIN METAFILE"), constraints (e.g., "MAX_STRING_LENGTH") and
characteristics (e.g., "USAGE") are written in upper case, whereas
categories (e.g., "constraints"), macros (e.g., "standard string
type") and enumerated string alternatives (e.g., "optional") are
written in lower case. This convention was made to make a formal
description more readable and is more a suggestion than an
imperative. In any case, the expressions "example", "Example" and
"EXAMPLE" are treated as being different.

A formal description is specified as a set of differences from the
base CGM standard. For instance, in the CALS application profile,
the maximum string length is restricted to 256 characters (see
"MAX_STRING_LENGTH") and only letters and digits may appear in a
string (see "VALID_CHARACTERS") . Characteristics like these are
known as constraints. Each constraint is global unless they are
specified in elements which define this constraint locally. For
example, "MAX_STRING_LENGTH" restricts the maximum string length
for all strings of the application. If a formal description
contains the definition:

44

"BEGIN METAFILE" := { "MAX_STRING_LENGTH" := { 1024 },
• • •

}

the maximum length is set to 1024 characters for the element "BEGIN
METAFILE" only, whereas the global definition holds for all other
string elements.

An element name followed by ' denotes the definition of the
designated element. If no ' appears, it is assumed that the
element is defined as a constraint or a macro. In this case, the
value defined there is substituted for the occurrence of the
element name. The difference between constraint and a macro is
that a constraint expresses some global properties of the formal
description, whereas a macro doesn't have any meaning except that
of textual substitution. It should be mentioned that macro-names
are the only names that can be choosen arbitrarily. All other
names must be chosen from a predefined set of keywords.

In the example, first "MAX_STRING_LENGTH" is set to 256 characters
as a constraint. This definition is used to define the macro
"standard string type". Later, the macro is used in a string
specification. The definition of "STRING" in the example evaluates
to:

"STRING" := { "MAX_STRING_LENGTH" := { 256 },
"VALID_CHARACTERS" := { •a'..'z', 'A'..'Z',

' 0 ' . . ' 9 ' } ,

"USAGE" := ["sometimes"] { "always", "never" },
"SUB_STRING" ;= { "example" }

}

The CGM standard allows the element "BEGIN METAFILE" to be followed
by a string. The element "USAGE" specifies whether a string must
appear or not. The possibilities are "always" (a string must
appear) , "never" (a string must not appear) , and "optional" (a
string may appear or not) . These three values are enumerated in
the example, where "optional" is set to be the default.

"SUB_STRING" specifies a string, which must occur somewhere in the
string. In the example this substring is "example". As with
numbers and letters, the wildcard can be used to denote any
number (for numbers), any letter (for characters), and any string
(for strings). When specifying strings, the wildcard '?' (exactly
one character) can also be used. This is illustrated by some
examples

:

45

*. .10
•a' .

•a' .

.

"te*t"

"te?*t”

a range up to 10 (no lower bound)

.

any character with an ascii code above 'a'.
any character between '

a
' and ' *

'
(‘ *

•

is a
character)

.

any string with a leading 'te' and a trailing 't',
for instance "test" or "text" (but also "tet")

.

the same as the previous example, but "tet" doesn't
match

.

B.4 Notation

The syntax used to describe the grammar uses the following
elements:

<. . .>
I I

• • •

<...>*
<...>+
[...]
I

U' . . 'c'
{ 'a' , 'b* •c'}

separates the left and right side of a rule
grouping of symbols
enclosing of a non-terminal symbol
enclosing of a terminal symbol
star closure (0 or more occurrences)
plus closure (1 or more occurrences)
optional element (can be omitted)
exclusive OR
shortcut for 'a','b','c'
one of '

a
' , '

b
' or '

c

'

Comments can be included in formal description to make it more
readable. A comment is introduced by a except when it occurs
within a string embedded in "...". The characters of a line
following a '%' (outside a string) are ignored.

46

APPENDIX C

GENERATOR QUESTIONNAIRE

47

I delimiter elements
1

NO-OPERATION
la) Does your implementation use this element? •ometimes

alw»ya

never

lb) What is the min. number of NO-OPS?

Ic) What is the max. number of NO-OPS?

2

BEGIN METAFILE
Caution: this element is required ***

2a) Does your implementation use the string parameter? sometimes

always

never

2b) What is the min. number of characters?

2c) What is the max. number of characters?

2d) In what range of ASCII characters does the value of a string-character-code always

Ue?

3 END METAFILE
*** Caution: this element is required ***

4 BEGIN PICTURE
*** Caution: this element is required ***

4a) What is the min. number of pictures in a CGM?

4b) What is the max. number of pictures in a CGM?

4c) Does your implementation use the string parameter? sometimes

always

never

4d) What is the min. number of characters?

48

4e) What is the max. number of characters?

4f) In what range of ASCII characters does the value of a string-character-code always

lie?

5

BEGIN PICTURE BODY
*** Caution: this element is i'cquii*ed ***

6

END PICTURE
*** Caution: this element is required ***

metafile descriptor elements

7

METAFILE VERSION
*** Caution: this element is required ***

7a) Specify the version number which may appear in a CGM (enumerate)?

8

METAFILE DESCRIPTION
8a) Does your implementation use this element? •ometimea

alw»ya

never

8b) Does your implementation use the string parameter? •ometimea

Iwnya
never

8c) What is the min. number of characters?

8d) What is the max. number of characters?

49

8e) In what range of ASCII characters does the value of a string-character-code always

lie?9

VDC TYPE
9a) Does your implementation use this element? sometimes

alwmys

never

9b) What VDC TYPEs does your implementation use?

integer Q
reel Q

10

INTEGER PRECISION

lOa) Does your implementation use this element? sometimes

always

never

lOb) What INTEGER PRECISIONS does your implementation use?

16 p
8 “

24 “
32

”

11

REAL PRECISION
Ila) Does your implementation use this element? sometimes

siwkys

never

lib) What REAL PRECISIONS does your implementation use?

32-bit flsed point P
32-bit flosting point

~
64-bit floating point

~
64-bit fixed point

12

INDEX PRECISION
12a) Does your implementation use this element? sometimes

always

never

12b) What INDEX PRECISIONS does your implementation use?

16 P
8 ”

24
""

32
”

50

13

COLOUR PRECISION

13a) Does your implementation use this element? •omctiiiMa

slwKjn

never

13b) What COLOUR PRECISIONS does your implementation use?

8 P
16

“
54

“

32 p

14

COLOUR INDEX PRECISION '

14a) Does your implementation use this element? eometime*

niweya

never

14b) What COLOUR INDEX PRECISIONS does your implementation use?

16 p
8

”
24

“
32 p

15

MAXIMUM COLOUR INDEX
15a) Does your implementation use this element? eomctimee

nlwmye

15b) What is the min. value for MAXIMUM COLOUR INDEX?

15c) What is the max. value for MAXIMUM COLOUR INDEX? |

16

COLOUR VALUE EXTENT
16a) Does your implementation use this element? eometimet

ftlw«3ra

never

16b) In what range of RGB values does the value of the COLOUR VALUE EXTENT
always lie?

17

METAFILE ELEMENT LIST

*** Caution: this element is required ***

51

17a) Does your impleinentation use the shorthand pseudoelements? aometimM
»lw«ya

never

17b) What shorthand pseudoelements does your implementation use?

Drawing set

Drawing'plua-controi set

18 METAFILE DEFAULTS REPLACEMENT
18a) Does your implementation use this element? aometimet

Iwnya
never

18b) What MEH'AFILE DEFAULTS REPLACEMENT does your implementation use?

VDC TYPE
INTEGER PRECISION

REAL PRECISION
INDEX PRECISION

COLOUR INDEX PRECISION
COLOUR VALUE EXTENT

CHARACTER CODING ANNOUNCER
SCALING MODE

COLOUR SELECTION MODE
UNE WIDTH SPECinCATlON MODE

MARKER SIZE SPECIFICATION MODE
EDGE WIDTH SPECIFICATION MODE

VDC EXTENT
BACKGROUND COLOUR

VDC INTEGER PRECISION
VDC REAL PRECISION
AUXILIARY COLOUR

TRANSPARENCY
CLIP RECTANGLE
CLIP INDICATOR

UNE BUNDLE INDEX
LINE TYPE

LINE WIDTH
LINE COLOUR

MARKER BUNDLE INDEX
MARKER TYPE
MARKER SIZE

MARKER COLOUR
TEXT BUNDLE INDEX
TEXT FONT INDEX
TEXT PRECISION

CHARACTER EXPANSION FACTOR
CHARACTER SPACING

TEXT COLOUR
CHARACTER HEIGHT

CHARACTER ORIENTATION
TEXT PATH

CHARACTER SET INDEX
ALTERNATE CHARACTER SET INDEX

nLL BUNDLE INDEX
INTERIOR STYLE

niX COLOUR
HATCH INDEX

PATTERN INDEX
EDGE BUNDLE INDEX

EDGE TYPE
EDGE WIDTH

EDGE COLOUR
' EDGE VISIBILITY

HLL REFERENCE POINT
PATTERN TABLE
COLOUR TABLE

ASPECT SOURCE FLAGS

19 FONT LIST

19a) Does your implementation use this element?

19b) What is the min. number of font names?

19c) What is the max. number of font names?

19d) What is the min. length of a font name?

aometimes

ni«rayB

never

52

19e) What is the max. length of a font name?

19f) Specify the font names which may appear in the parameter list (list or describe)?

20 CHARACTER SET LIST

20a) Does your implementation use this element? sometime*

ftlwaya

never

20b) What is the min. number of character sets?

20c) What is the max. number of character sets?

20d) What is the min. length of a sequence tail?

20e) What is the max. length of a sequence tail?

20f) What CHARACTERJSET_,T\'PE does your implementation use?

94-

cheraeter G'set

95-

chsracter G>set

94.^aracter multibyte G-set

21 CHARACTER CODING ANNOUNCER
21a) Does your implementation use this element?

96>charscter multibyte G<set Q
complete code rj

sometimes

elways

never

21b) What CHARACTER CODING ANNOUNCER does your implementation use?

7.bit basic

S>bit basic

T.bit extended

8>bit extended

something else B

21c) Does your implementation use negative values for CHARACTER CODING AN- ye* n
NOUNCER to indicate private use? no ||

picture descriptor elements

53

22

SCALING MODE
22a) Does your implementation use this element? •ometimca

•Iwsya

never

22b) What SCALING MODE^ does your implementation use?

abstrsct Q
metric M

22c) In what range of real numbers does the value of the METRIC^CALE-FACTOR
always lie?

22d) What METRIC SCALE FACTOR precisions does your implementation use?

33-bit Axed point

23

COLOUR SELECTION MODE
23a) Does your implementation use this element? lometimea

Iwmys
never

23b) What COLOUR SELECTION MODEIs does your implementation use?

indexed [~~|

direct

24

LINE WIDTH SPECIFICATION MODE
24a) Does your implementation use this element? aometimea

alwmys

never

24b) What LINE WIDTH SPECIFICATION MODEs does your implementation use?

aceled [""[

ebaolute

25

MARKER SIZE SPECIFICATION MODE
25a) Does your implementation use this element? aometimea

ftlwnys

never

25b) What MARKER SIZE SPECIFICATION MODEs does your implementation use?

tcaled r~[
abaolute

54

26

EDGE WIDTH SPECIFICATION MODE
26a) Does your implementation use this element? •ometimea

always

never

26b) What EDGE WIDTH SPECIFICATION

sealed

absolute

27

VDC EXTENT
27a) Does your implementation use this element? sometimes

always

never

27b) Does your implementation use address spaces where the hrst point is not to the left sometimes

and below the second point? always

never

MODEls does your implementation use?

B

28

BACKGROUND COLOUR
28a) Does your implementation use this element? sometimes

always

never

control elements

29

VDC INTEGER PRECISION
29a) Does your implementation use this element? sometimes

always

never

29b) What VDC INTEGER PRECISIONS does your implementation use?

16 P
74

~~

37 “

30

VDC REAL PRECISION
30a) Does your implementation use this element? sometimes

always

never

30b) What VDC REAL PRECISIONS does your implementation use?

32>bit flxed point

32-bit floating point

64-bit floating point

64-bit fixed point

I

n

55

31 AUXILIARY COLOUR
31a) Does your implementation use this element?

32 TRANSPARENCY
32a) Does your implementation use this element?

ometintMS

Iwkjm
never

•ometima
nlwnya

never

32b) What on/off flags does your implementation use?

on n
off

33 CLIP RECTANGLE
33a) Does your implementation use t his element? semetiniet

•Iwnjrs

never

34 CLIP INDICATOR
34a) Does your implementation use this element? •ometimes

always

never

34b) What clip indicator values does your implementation use?

on n
off

graphical primitive elements

35 POLYLINE
35a) Does your implementation use this element? •ometimea

alwnya

35b) What is the min. number of points (coordinate pairs) in the parameter list?

35c) What is the max. number of points (coordinate pairs) in the parameter list?

36 DISJOINT POLYLINE

36a) Does your implementation use this element? Mmetimea
always

never

56

36b) What is the min. number of points (coordinate pairs) in the parameter list?

36c) What is the max. number of points (coordinate pairs) in the parameter list?
37

POLYMARKER
37a) Does your implementation use this element? ometimes

alwsya

never

37b) What is the min. number of points (coordinate pairs) in the parameter list?

37c) What b the max. number of points (coordinate pairs) in the parameter Ibt?

38

TEXT
38a) Does your implementation use this element? iometimet

alwmys

never

38b) What b the min. number of characters in a text string?

38c) What b the max. number of characters in a text string?

38d) In what range of ASCII characters does the value of a string-character-code always

lie?

38e) What final/non-final flags does your implementation use?

final FH
non.finai Q

38f) What text attribute modifications between non-final text does your implementation

use?

TEXT FONT INDEX TEXT COLOUR
CHARACTER EXPANSION FACTOR CHARACTER HEIGHT

CHARACTER SPACING CHARACTER SET INDEX

39

RESTRICTED TEXT
39a) Does your implementation use this element? •ometimca

always

never

39b) What b the min. number of characters in a text string?

39c) What b the max. number of characters in a text string?

57

39d) In what range of ASCII characters does the value of a string-<haracter-code always

lie?

39e) What final/non-final flags does your implementation use?

final

non>finaJ Q

40

APPEND TEXT
40a) Does your implementation use this element? MmetimM

always

never

40b) What is the min. number of characters in a text string?

40c) What is the max. number of characters in a text string?

40d) In what range of ASCII characters does the value of a string-character-code always

lie?

40e) What iinal/non-flnal flags does your implementation use?

final

non.final B

41

POLYGON
41a) Does your implementation use this element? ometimci

always

iMvcr

41b) What is the min. number of points (coordinate pairs) in the parameter list?

41c) What is the max. number of points (coordinate pairs) in the parameter list?

42

POLYGON SET

42a) Does your implementation use this element? sometimes

always

42b) What is the min. number of points (coordinate pairs) in the parameter list?

42c) What is the max. number of points (coordinate pairs) in the parameter list?

58

42d) What edge-out flags does your implementation use?

invisible

visible

close/invisible

close/visible

43

CELL ARRAY
43a) Does your implementation use this element? sometimes

slwnys

never

43b) What is the min. number of columns?

43c) What is the max. number of columns?

43d) What is the min. number of rows?

43e) What is the max. number of rows?

43f) What LOCAL COLOUR PRECISIONS does your implementation use?

0 8

1 16

2 24
* 4 33

43g) What cell representation modes does your implementation use?

run>length [~~1

packed Q

44

GENERALIZED DRAWING PRIMITIVE
44a) Does your implementation use this element? sometimes

always

never

44b) In what range of indices does the value of the GDP identifler always lie?

44c) What is the min. number of characters in a data record string?

44d) What is the max. number of characters in a data record string?

45

RECTANGLE
45a) Does your implementation use this element? sometimes

always

never

59

46 CIRCLE
46a) Does your implementation use this element? •ometiincs

slwaya

iMvcr

47 CIRCULAR ARC 3 POINT
47a) Does your implementation use this element? ometima

%lw»ys

never

48 CIRCULAR ARC 3 POINT CLOSE
48a) Does your implementation use this element?

49 CIRCULAR ARC CENTRE
49a) Does your implementation use this element?

50 CIRCULAR ARC CENTRE CLOSE
50a) Does your implementation use this element?

•ometima
lw«y«
never

•ometima
always

never

•ometima
always

never

51

ELLIPSE

51a) Does your implementation use this element? •ometima
always

never

52

ELLIPTICAL ARC
52a) Does your implementation use this element? eometima

always

never

53

ELLIPTICAL ARC CLOSE
53a) Does your implementation use this element?

attribute elements

•ometima
always

never

60

54 LINE BUNDLE INDEX
54a) Does your implementation use this element? aomMiiiMs

alwftys

never

54b) In what range of indices does the value of the LINE BUNDLE INDEX always lie?

55 LINE TYPE
55a) Does your implementation use this element? •ometime

•hr»)rt

55b) In what range of indices does the value of the LINE TYPE always lie?

55c) Does your implementation use negative values for LINE TYPE to indicate private yn

use? B

56

LINE WIDTH
56a) Does your implementation use this element? •ometimca

alwmyi

57

LINE COLOUR
57a) Does your implementation use this element? tometima

siwmyB

n«ver

58

MARKER BUNDLE INDEX
58a) Does your implementation use this element? aometimea

mlways

never

58b) In what range of indices does the value of the MARKER BUNDLE INDEX always

Ue?

61

59

MARKER TYPE
59a) Does your implementation use this element? •ometima

»lw»yt

never

59b) Does your implementation use negative values for MARKER TYPE to indicate pri- y««

vate use? B

60

MARKER SIZE

60a) Does your implementation use this element? •omecimM
alw«yB

never

61

MARKER COLOUR
61a) Does your implementation use this element? •ometimes

alvmys

never

62

TEXT BUNDLE INDEX
62a) Does your implementation use this element? Mmetimca

•Iwnya

never

62b) In what range of indices does the value of the TEXT BUNDLE INDEX always lie?

63

TEXT FONT INDEX
63a) Does your implementation use this element? sometime*

%lwn3rs

never

63b) In what range of indices does the value of the TEXT FONT INDEX always lie?

64

TEXT PRECISION
64a) Does your implementation use this element? sometime*

always

never

62

64b) What TEXT PRECISION does your impiementation use?

string [“

charmcter

stroke
”

65

CHARACTER EXPANSION FACTOR
65a) Does your implementation use this element? sometimes

alwmya

never

65b) In what range of real numbers does the value of a CHARACTER EXPANSION
FACTOR always lie?

66

CHARACTER SPACING
66a) Does your implementation use this element? sometimes

mlwmys

never

66b) In what range of real numbers does the \-alue of a CHARACTER SPACING always

Ue?

67

TEXT COLOUR
67a) Does your implementation use this element? sometimes

alwn)rs

never

68

CHARACTER HEIGHT
68a) Does your implementation use this clement? sometimes

alwnyt

never

69 CHARACTER ORIENTATION
69a) Does your implementation use this element? sometimes

ftiwnys

never

70 TEXT PATH
70a) Does your implementation use this clement? sometimes

mlwmyn

never

63

70b) What TEXT PATH values does your implementation use?

nght p
left

"
up

”
down

“

71 TEXT ALIGNMENT
71a) Does your implementation use this element?

71b) What horizontal alignment values does your implementation use?

normal

left

centre

right

continuous horizontal B

71c) What vertical alignment values does your implementation use?

normal

top

cap

half

base

continuous vertical

72 CHARACTER SET INDEX
72a) Does your implementation use this element?

sometimes

always

never

sometimes

always

never

72b) In what range of indices does the value of the CHARACTER SET INDEX always

lie?

73 ALTERNATE CHARACTER SET INDEX
73a) Does your implementation use this element? sometimes

always

never

73b) In what range of indices does the value of the ALTERNATE CHARACTER SETT

INDEX always lie?

74 FILL BUNDLE INDEX
74a) Does your implementation use this element? sometimes

always

never

64

74b) In what range of indices does the value of the FILL BUNDLE INDEX always lie?

75 INTERIOR STYLE
75a) Does your implementation use this element? ometim««

•iwmys

never

75b) What INTERIOR STYLE does your implementation use?

hollow

solid

pattern

hatch

empty
something else

75c) Does your implementation use negative values for INTERIOR STYLE to indicate yes

private use? B

76 FILL COLOUR
76a) Does your implementation use this element? sometimes

always

77 HATCH INDEX
77a) Does your implementation use this element? sometimes

always

never

77b) In what range of indices does the value of the HATCH INDEX always lie?

77c) Does your implementation use negative values for HATCH INDEX to indicate private yes

use? **® B
78 PATTERN INDEX
78a) Does your implementation use this element? sometimes

alwmy*

never

78b) In what range of indices does the value of the PATTERN INDEX always lie?

65

79

EDGE BUNDLE INDEX
79a) Does your implementation use this element? aoinetimcs

never

79b) In what range of indices does the value of the EDGE BUNDLE INDEX always lie?

80

EDGE TYPE
80a) Does your implementation use this element? •ometimei

niwsya

never

80b) In what range of indices does the value of the EDGE TYPE always lie?

80c) Does your implementation use negative values for EDGE TYPE to indicate private yea

use? a

81

EDGE WIDTH
81a) Does your implementation use this element? aometimea

alwmya

never

82 EDGE COLOUR
82a) Does your implementation use this element? aometimea

•lw«y«

Mver

83 EDGE VISIBILITY

83a) Does your implementation use this element? aometimea

«lw«ys

never

83b) What on/off flags does your implementation use?

off

on

84 FILL REFERENCE POINT
84a) Does your implementation use this element? aometimea

elways

never

66

85

PATTERN TABLE
85a) Does your implementation use this element? •ORictiiiMa

•Iwkya

never

85b) In what range of indices does the value of the INDEX always lie?

85c) In what range of integers does the value of the number of columns always lie?

85d) In what range of integers does the value of the number of rows always lie?

85e) What LOCAL COLOUR PRECISIONS does your implementation use?

0 8

1 16

3 34

4 33

86

PATTERN SIZE

86a) Does your implementation use this element? •ometimci

nlwnjra

never

87

COLOUR TABLE
87a) Does your implementation use this element? aometimet

iwnyt
never

87b) What is the min. number of COLOUR TABLE entries?

87c) What is the max. number of COLOUR TABLE entries?

87d) In what range of indices does the value of the INDEX always lie?

67

88 ASPECT SOURCE FLAGS

88a) Does your implementation use this element? •ometiiMS

IwKjr*

88b) What ASPECT SOURCE FLAGS does your implementation use?

LINE TYPE
LINE WIDTH

LINE COLOUR
MARKER TYPE
MARKER SIZE

MARKER COLOUR
TEXT FONT INDEX
TEXT PRECISION

CHARACTER EXPANSION FACTOR
CHARACTER SPACING

TEXT COLOUR
INTERIOR STYLE

FILL COLOUR
HATCH INDEX

PATTERN INDEX
EDGE TYPE

EDGE WIDTH
EDGE COLOUR

Individual bundled

escape elements

89 ESCAPE
89a) Does your implementation use this element? •ometimea

AlWAjTB

never

89b) In what range of indices does the value of the ESCAPE identifier always lie?

89c) What is the min. number of characters in a data record string?

89d) What is the max. number of characters in a data record string?

external elements

90 MESSAGE
90a) Does your implementation use this element? ometimea

elwnya

90b) What action-required flags does your implementation use?

no netion (~|

action n

90c) What is the min. number of characters in a message string?

90d) What is the max. number of characters in a message string?

91 APPLICATION DATA
91a) Does your implementation use this element? aomctimaa

alwajra

IMVCT

91b) In what range of indices does the value of the APPLICATION DATA identifier always

Ue?

91c) What is the min. number of characters in a data record string?

91d) What is the max. number of characters in a data record string?

92 Primitives and attributes

Mark the attributes available for each of the listed elements

POLYLINE DISJOINT
MLYLINe

ClIICULAR AllC'a
POINT

CIRCULAR ARC
CCNTRS

ELLIPTICAL ARC

LINE BUNDLE
INDEX

UNE TYPE

UNE WIDTH

LINE COLOUR

69

POLYMARKER

MAKKBH 8UNOLB INOBX

MARKBR TYPE

MARKER BIBB

MARKBR COMUR

TEXT RESTRICTED TEXT APPEND TEXT

TEXT BUNDLE INDEX

TEXT PONT INDEX

TEXT PRECISION

CHARACTER EXPANSION
FACTOR

CHARACTER SPACING

TEXT COLOUR

CHARACTER HEIGHT

CHARACTER
ORIENTATION

TEXT PATH

TEXT ALIGNMENT

CHARACTER SET INDEX

ALTERNATE CHARACTER
SET INDEX

70

POLYGON POLYGON
SET

RECTANGLE CIRCLE CIRCULAR
ARC S
POINT
CLOSE

CIRCULAR
ARC
CENTRE

ELLIPSE ELLIPTICAL
ARC CLOSE

PILL
BUNDLB
INDEX

INTERIOR
STYLE

PILL
COLOUR

HATCH
IHOEX

PATTERN
INDEX

EDOE
BUNDLE
INDEX

EDGE TYPE

EDOE
WIDTH

EDOE
COLOUR

EDOE
VISIBILITY

PILL
REPERENCE
POINT

PATTERN
TABLE

PATTERN
SIZE

COLOUR
TABLE

71

APPENDIX D

TEST SUITE DESCRIPTION DATABASE

73

ELEMENT
Question Answer

Implications for Testing and
Reauirements on CGM Suite-under-Test

NO-OPERATION

la sometimes used At least 5 of the files In the CGM sulte-

under-test shall include this element.

1b min. number of NO-OPS At least one instance of a NO-
OPERATION element which contains the
minimum number of NO-OPs allowed
shall appear in the files that comprise the
CGM suite-under-test.

1c max. number of NO-OPS At least one Instance of a NO-
OPERATION element which contains the
maximum number of NO-OPs allowed
shall appear In the files that comprise the
CGM suite-under-test. If there is no
maximum, then use the value 500.

BEGIN METAFILE Element must always be present.

2a string sometimes used At least 50% of the instances, but not
more than 75% of the instances, of this

element shall use the string parameter.

2b minimum string length At least one of the files in the CGM
suite-under-test shall contain a string

with the minimum number of characters.

2c maximum string length At least one of the files in the CGM
suite-under-test shall contain a string

with the maximum number of characters.
If there is no maximum, then use the
value 300.

2d characters used Every ASCII character code that can
appear in the string parameter shall

appear in at least one instance of this

element.

END METAFILE Element must always be present.

BEGIN PICTURE Element must always be present, if there
is at least one picture in the metafile.

4a min. number of pictures At least one instance of the files in the
CGM suite-under-test shall contain the
minimum number of pictures.

74

ELEMENT
Question Answer

4b max. number of pictures

4c string sometimes used

4d minimum string length

4e maximum string length

4f characters used

BEGIN PICTURE BODY

END PICTURE

METAFILE VERSION

7a version = 1

version = 2 or 3

version > 3

METAFILE DESCRIPTION

8a sometimes used

8b string sometimes used

8c minimum string length

75

Implications for Testing and

Requirements on CGM Suite-under-Test

At least one Instance of the files in the

CGM suite-under-test shall contain the

maximum number of pictures. If there is

no maximum, then use the value 5.

At least 50% of the instances, but not
more than 75% of the instances, of this

element shall use the string parameter.

At least one of the files in the CGM
suite-under-test shall contain a string

with the minimum number of characters.

At least one of the files In the CGM
suite-under-test shall contain a string

with the maximum number of characters.
If there is no maximum, then use the
value 300.

Every ASCII character that can appear in

the string parameter shall appear in at

least one instance of this element.

Element must always be present, if there
is at least one picture in the metafile.

Element must always be present, if there
is at least one picture in the metafile.

Element must always be present.

This is the only version we can test.

At least 50% of the files, but not more
than 90% of the files, in the CGM suite-

under-test shall include this element.

At least 50% of the instances, but not
more than 75% of the instances, of this
element shall use the string parameter.

At least one of the files in the CGM
suite-under-test shall contain a string
with the minimum number of characters.

Cannot be tested.

Error; cannot test until fixed.

ELEMENT
Question Answer

8d maximum string length

8e characters used

VDC TYPE

9a when element not used

sometimes used

9b both types supported

INTEGER PRECISION

10a when element not used

sometimes used

10b only one precision used
exactly two precisions used

three or four precisions used

REAL PRECISION

11a when element not used

sometimes used

11b only one precision used
exactly two precisions used

implications for Testing and
Requirements on CGM Suite-under-Test

At least one of the files in the CGM
suite-under-test shall contain a string

with the maximum number of characters.

If there is no maximum, then use the
value 300.

Every ASCII character that can appear In

the string parameter shall appear in at

least one instance of this element.

AH appropriate CGM elements should use
integer VDC.
At least 50% of the files, but not more
than 90% of the files, in the CGM suite-

under-test shall include this element.

At least one third of the files in the CGM
suite-under-test shall use the less

frequently used VDC type.

AH appropriate CGM elements should use
16-bit integer precision.
At least 50% of the files, but not more
than 90% of the files, in the CGM sulte-

under-test shall include this element.

No requirement.
At least one third of the files in the CGM
suite-under-test shall use the less

frequently used integer precision.

Each precision used shall be represented
in at least 5 of the files in the CGM suite-

under-test.

AH appropriate CGM elements should use
22-bit fixed point real precision.
At least 50% of the files, but not more
than 90% of the files, in the CGM suite-

under-test shall include this element.

No requirement.
At least one third of the files in the CGM
suite-under-test shall use the less

frequently used real precision.

76

ELEMENT
Question Answer

three or four precisions used

INDEX PRECISION

1 2a when element not used

sometimes used

12b only one precision used
exactly two precisions used

three or four precisions used

COLOUR PRECISION

13a when element not used

sometimes used

13b only one precision used
exactly two precisions used

three or four precisions used

COLOUR INDEX PRECISION

14a when element not used

sometimes used

14b only one precision used
exactly two precisions used

three or four precisions used

Implications for Testing and
Requirements on CQM Suite-under-Test

Each precision used shall be represented

in at least 5 of the files in the CGM suite-

under-test.

AH appropriate CGM elements should use
1 6-bit index precision.

At least 50% of the files, but not more
than 90% of the files, in the CGM suite-

under-test shall include this element.

No requirement.
At least one third of the files in the CGM
suite-under-test shall use the less

frequently used index precision.

Each precision used shall be represented
in at least 5 of the files in the CGM suite-

under-test.

AH appropriate CGM elements should use
8-bit colour precision.
At least 50% of the files, but not more
than 90% of the files. In the CGM suite-

under-test shall include this element.

No requirement.
At least one third of the files in the CGM
sulte-under-test shall use the less

frequently used colour precision.

Each precision used shall be represented
in at least 5 of the files in the CGM suite-

under-test.

AH appropriate CGM elements should use
1 6-hit colour index precision.
At least 50% of the files, but not more
than 90% of the files, in the CGM suite-

under-test shall include this element.

No requirement.
At least one third of the files in the CGM
suite-under-test shall use the less

frequently used colour index precision.
Each precision used shall be represented
in at least 5 of the files in the CGM suite-

under-test.

77

ELEMENT
Question Answer

MAXIMUM COLOUR INDEX

1 5a when element not used

sometimes used

15b min. value of max. index

15c max. value of max. index

COLOUR VALUE EXTENT

1 6a when element not used

sometimes used

1 6b colour value extent range

METAFILE ELEMENT LIST

17a use no pseudoelements
always use pseudoelements
sometimes use pseudoelem.

17b use both pseudoelements

78

Implications for Testing and
Requirements on CGM Suite-under-Test

AH appropriate CGM elements should
contain colour indices that do not exceed
the value of 63.
At least 50% of the files, but not more
than 90% of the files, in the CGM suite-

under-test shall include this element.

Use of the minimum value possible for

the maximum colour index element shall

be represented in at least 2 of the files in

the CGM suite-under-test.

Use of the maximum value possible for

the maximum colour index element shall

be represented in at least 2 of the files in

the CGM suite-under-test. If there is no
maximum, then use the value 300.

AH appropriate CGM elements should
contain RGB component values that do
not exceed the value of 255.
At least 50% of the files, but not more
than 90% of the files, in the CGM suite-

under-test shall include this element.

Use of the maximum values indicated for

the RGB components of direct color

specifications shall be represented in at

least one of the files in the CGM suite-

under-test.

Element must always be present.

No special requirement.
No special requirement.
At least one third of the files in the CGM
suite-under-test shall use one of the
pseudoelements.

At least one third of the files in the CGM
suite-under-test shall use the less

frequently used of the pseudoelements.

ELEMENT Implications for Testing and

Question Answer Requirements on CGM Suite-under-Test

METAFILE DEFAULTS REPLACEMENT

18a sometimes used

18b list of elements

FONT LIST

19a sometimes used

19b min. number of font names

1 9c max. number of font names

19d min. length of font name

19e max. length of font name

19f allowed font names

79

At least 50%, but not more than 90%,
of the files In the CGM suite-under-test

shall include this element.

At least one example of each of the

elements that can appear in a METAFILE
DEFAULTS REPLACEMENT element shall

occur within the set of files that

comprise the CGM suite-under-test.

At least 50%, but not more than 90%,
of the files in the CGM suite-under-test
shall include this element.

At least one of the files in the CGM
suite-under-test shall contain a FONT
LIST element that contains the minimum
number of font names.

At least one of the files In the CGM
suite-under-test shall contain a FONT
LIST element that contains the maximum
number of font names. If there is no
maximum, then use the value 10.

At least one of the files in the CGM
suite-under-test shall contain a FONT
LIST element that contains a font name
whose string length equals the minimum
string length allowed for a font name.

At least one of the files in the CGM
suite-under-test shall contain a FONT
LIST element that contains a font name
whose string length equals the maximum
string length allowed for a font name. If

there is no maximum, then use the value
300.

At least one Instance of each allowed
font name shall appear in the files that
comprise the CGM suite-under-test.

ELEMENT
Question Answer

CHARACTER SET LIST

20a sometimes used

20b min. number of char, sets

20c max. number of char, sets

20d min. length of seq. tail

20e max. length of seq. tail

20f only one char, set type
exactly two char, set types

three, four, or five types

Implications for Testing and

Requirements on CGM Suite-under*Test

At least 25%, but not more than 90%,
of the files in the CGM suite-under-test

shall include this element.

At least one of the files in the CGM
suite-under-test shall contain a

CHARACTER SET LIST element that

contains the minimum number of

character sets.

At least one of the files in the CGM
sulte-under-test shall contain a

CHARACTER SET LIST element that

contains the maximum number of

character sets. If there is no maximum,
then use the value 5.

At least one of the files in the CGM
suite-under-test shall contain a

CHARACTER SET LIST element that

contains a character set designation
sequence tail whose string length equals
the minimum string length allowed for a

designation sequence tail.

At least one of the files in the CGM
suite-under-test shall contain a

CHARACTER SET LIST element that

contains a character set designation
sequence tail whose string length equals
the maximum string length allowed for a

designation sequence tail. If there is no
maximum, then use the value 4.

No requirement.
At least one third of the files In the CGM
suite-under-test shall use the less

frequently used character set type.
Each character set type used shall be
represented in at least one of the files in

the CGM sulte-under-test.

CHARACTER CODING ANNOUNCER

21a sometimes used

80

At least 25%, but not more than 90%,
of the files in the CGM suite-under-test
shall include this element.

ELEMENT
Question Answer

Implications for Testing and

Requirements on CGM Suite-under-Test

21b only one coding announcer No requirement.
exactly two announcers At least 5 of the files in the CGM suite-

under-test shall use the less frequently
used character coding announcer.

three, four, or five types Each character coding announcer used
shall be represented in at least one of the
files in the CGM suite-under-test.

21c negative coding announcer At least one file in the CGM suite-under-
test shall contain an instance of private

use.

SCALING MODE

22a when element not used AH appropriate CGM elements should use
abstract scaling mode.

sometimes used At least 50% of the files, but not more
than 90% of the files, in the CGM suite-

under-test shall include this element.

22b both modes supported At least one-third of the files in the CGM
suite-under-test shall use the less

frequently used scaling mode.

22c minimum metric scale factor At least one of the files In the CGM
suite-under-test with scaling mode metric
shall contain a metric scale factor equal
to the minimum value allowed for this

parameter.

maximum metric scale factor At least one of the files in the CGM
suite-under-test with scaling mode metric
shall contain a metric scale factor equal
to the maximum value allowed for this

parameter. If there is no maximum, then
use the value 10.0.

22d metric s.f. precision Any answer other than 32-bit fixed point
violates the CGM standard.

COLOUR SELECTION MODE

23a when element not used AH appropriate CGM elements should use
indexed colour selection mode.

sometimes used At least 50% of the files, but not more
than 90% of the files. In the CGM suite-
under-test shall include this element.

81

ELEMENT
Question Answer

23b both modes supported

LINE WIDTH SPECIFICATION MODE

24a when element not used

sometimes used

24b both modes supported

Implications for Testing and
Requirements on CGM Suite-under-Test

At least one third of the files in the CGM
suite-under-test shall use the less

frequently used colour selection mode.

AH appropriate CGM elements should use
scaled line width specification mode.
At least 50% of the files, but not more
than 90% of the files, in the CGM suite-

under-test shall include this element.

At least one third of the files in the CGM
suite-under-test shall use the less

frequently used line width specification

mode.

MARKER SIZE SPECIFICATION MODE

25a when element not used

sometimes used

25b both modes supported

AH appropriate CGM elements should use
scaled marker size specification mode.
At least 50% of the files, but not more
than 90% of the files, in the CGM suite-

under-test shall include this element.

At least one third of the files In the CGM
sulte-under-test shall use the less

frequently used marker size specification

mode.

EDGE WIDTH SPECIFICATION MODE

26a when element not used

sometimes used

26b both modes supported

VDC EXTENT

27a when element not used

AH appropriate CGM elements should use
scaled edge width specification mode.
At least 50% of the files, but not more
than 90% of the files, in the CGM suite-

under-test shall include this element.

At least one third of the files in the CGM
suite-under-test shall use the less

frequently used edge width specification

mode.

If VDC points are expected to be visible

in the corresponding CGM hardcopy, all

VDC points should He between (0,0) and
(32767,32767) if VDC TYPE is integer
and between (0.0, 0.0) and (1.0, 1.0) if

VDC TYPE is real.

82

ELEMENT
Question Answer

sometimes used

27b sometimes or always

BACKGROUND COLOUR

28a when element not used

sometimes used

VDC INTEGER PRECISION

29a when element not used

sometimes used

29b only one precision used
two or three precisions used

VDC REAL PRECISION

30a when element not used

sometimes used

Implications for Testing and

Requirements on CGM Suite-under-Test

At least 50% of the files, but not more
than 90% of the files, in the CGM suite-

under-test shall Include this element.

At least one of the files in the CGM
suite-under-test shall contain an instance
of each of the possible four relationships

(below/left, below/right, above/left,

above/right) between the first and
second VDC points.

AH CGM hardcopies will have a device-
dependent background colour (that is,

the default background colour will

depend on the specific CGM
interpret/output device combination).
This could easily have the effect of
"hiding" some primitives that are
expected to be visible in the intended
picture.

At least 50% of the files, but not more
than 90% of the files, in the CGM suite-

under-test shall Include this element.

if VDC TYPE is integer, all appropriate
CGM elements should use 16-bit integer
VDC precision.
At least 50% of the files, but not more
than 90% of the files. In the CGM suite-

under-test shall include this element.

No requirement.
Each precision used shall be represented
in at least 5 of the files In the CGM suite-

under-test.

IF VDC TYPE is real, all appropriate CGM
elements should use 32-bit fixed point
real precision.
At least 50% of the files, but not more
than 90% of the files, in the CGM suite-
under-test shall include this element.

83

ELEMENT
Question Answer

30b only one precision used
exactly two precisions used

three or four precisions used

AUXILIARY COLOUR

31a sometimes used

TRANSPARENCY

32a sometimes used

32b both flags used

CLIP RECTANGLE

33a sometimes used

CLIP INDICATOR

34a sometimes used

34b both values used

POLYLINE

35a sometimes used

35b min. number of points

Implications for Testing and

Requirements on CGM Suite-under-Test

No requirement.
At least one third of the files in the CGM
suite-under-test shall use the less

frequently used real precision.

Each precision used shall be represented
In at least 5 of the files in the CGM sulte-

under-test.

At least 5 of the files in the CGM sulte-

under-test shall include this element.

At least 5 of the files in the CGM sulte-

under-test shall include this element.

At least 2 of the files In the CGM suite-

under-test shall use the less frequently
used on/off flag value.

At least 25%, but not more than 90%,
of the files in the CGM suite-under-test
shall include this element.

At least 25%, but not more than 90%,
of the files in the CGM suite-under-test
shall include this element.

At least 5 of the files in the CGM suite-

under-test shall use the less frequently
used clip indicator value.

At least 10, but not more than 90% of
the files, in the CGM suite-under-test
shall include this element.

At least one of the files In the CGM
suite-under-test shall contain a POLYLINE
element with the number of coordinate
points equal to the minimum number
allowed.

84

ELEMENT
Question Answer

35c max. number of points

DISJOINT POLYLINE

36a sometimes used

36b min. number of points

36c max. number of points

POLYMARKER

37a sometimes used

37b min. number of points

37c max. number of points

TEXT

Implications for Testing and

Requirements on CGM Suite-under-Test

At least one of the files in the CGM
suite-under-test shall contain a POLYLINE
element with the number of coordinate
points equal to the maximum number
allowed. If there is no maximum, then
use 1200.

At least 5 of the files, but all of the files.

In the CGM suite-under-test shall include

this element.

At least one of the files in the CGM
sulte-under-test shall contain a DISJOINT
POLYLINE element with the number of
coordinate points equal to the minimum
number allowed.

At least one of the files in the CGM
suite-under-test shall contain a DISJOINT
POLYLINE element with the number of
coordinate points equal to the maximum
number allowed. If there is no
maximum, then use 1200.

At least 10 of the files, but not more
than 90% of the files. In the CGM sulte-

under-test shall include this element.

At least one of the files in the CGM
suite-under-test shall contain a
POLYMARKER element with the number
of coordinate points equal to the
minimum number allowed.

At least one of the files in the CGM
suite-under-test shall contain a
POLYMARKER element with the number
of coordinate points equal to the
maximum number allowed. If there is no
maximum, then use 1200.

38a sometimes used

85

At least 10 of the files in the CGM suite-
under-test, but not more than 90% of
the files, shall contain this element.

ELEMENT
Question Answer

38b minimum string length

38c maximum string length

38d characters used

38e both types supported

38f some attribute modifications

RESTRICTED TEXT

39a sometimes used

39b minimum string length

39c maximum string length

39d characters used

39e both types supported

Implications for Testing and
Requirements on CGM Suite-under-Test

At least one of the files in the CGM
suite-under-test shall contain a text string

with the minimum number of characters.

At least one of the files In the CGM
suite-under-test shall contain a text string

with the maximum number of characters.
If there is no maximum, then use the
value 300.

Every ASCII character code that can
appear in the string parameter shall

appear in at least one instance of this

element.

At least 1 0 of the files In the CGM sulte-

under-test shall contain TEXT elements
which use the less frequently used
final/non-final flag.

There shall be at least one example of a

TEXT (non-final)/APPEND TEXT (final)

pair with an Intervening text attribute

modification for each text attribute

modification used.

At least 10 of the files in the CGM sulte-

under-test, but not more than 90% of
the files, shall contain this element.

At least one of the files In the CGM
suite-under-test shall contain a text string

with the minimum number of characters.

At least one of the files In the CGM
suite-under-test shall contain a text string

with the maximum number of characters.
If there is no maximum, then use the
value 300.

Every ASCII character code that can
appear in the string parameter shall

appear in at least one instance of this

element.

At least 10 of the files in the CGM suite-

under-test shall contain RESTRICTED
TEXT elements which use the less

frequently used final/non-final flag.

86

ELEMENT
Question Answer

Implications for Testing and
Requirements on CGM Suite-under-Test

39f some attribute modifications

APPEND TEXT

40a sometimes used

40b minimum string length

40c maximum string length

40d characters used

40e both types supported

40f some attribute modifications

POLYGON

41a sometimes used

I

41b min. number of points

There shall be at least one example of a

RESTRICTED TEXT (non-flnal)/APPEND
TEXT (final) pair with an intervening text

attribute modification for each text

attribute modification used.

At least 10 of the files in the CGM suite-

under-test, but not more than 90% of
the files, shall contain this element.

At least one of the files in the CGM
suite-under-test shall contain a text string

with the minimum number of characters.

At least one of the files in the CGM
suite-under-test shall contain a text string

with the maximum number of characters.
If there is no maximum, then use the
value 300.

Every ASCII character code that can
appear in the string parameter shall

appear in at least one instance of this

element.

At least 10 of the files in the CGM suite-

under-test shall contain APPEND TEXT
elements which use the less frequently
used final/non-final flag.

There shall be at least one example of a
APPEND TEXT (non-final)/APPEND TEXT
(final) pair with an intervening text
attribute modification for each text
attribute modification used.

At least 10, but not more than 90% of
the files, in the CGM suite-under-test
shall include this element.

At least one of the files in the CGM
suite-under-test shall contain a
POLYGON element with the number of
coordinate points equal to the minimum
number allowed.

87

ELEMENT
Question Answer

41c max. number of points

POLYGON SET

42a sometimes used

42b min. number of points

42c max. number of points

Implications for Testing and
Requirements on CGM Suite-under-Test

At least one of the files in the CGM
suite-under-test shall contain a

POLYGON element with the number of

coordinate points equal to the maximum
number allowed. If there is no
maximum, then use 1 200.

At least 10, but not more than 90% of
the files. In the CGM suite-under-test

shall include this element.

At least one of the files in the CGM
sulte-under-test shall contain a
POLYGON SET element with the number
of coordinate points equal to the
minimum number allowed.

At least one of the files in the CGM
suite-under-test shall contain a

POLYGON SET element with the number
of coordinate points equal to the
maximum number allowed. If there is no
maximum, then use 1 200.

42d only one edge-out flag used
exactly two flag values used

three or four flag values used

CELL ARRAY

43a sometimes used

43b min. number of columns

43c max. number of columns

No requirement.
At least 5 of the files in the CGM sulte-

under-test shall use the less frequently

used edge-out flag value.
Each edge out flag value used shall be
represented In at least 3 of the files in

the CGM sulte-under-test.

At least 10 of the files in the CGM sulte-

under-test shall include this element.

At least one of the instances of this

element shall have the number of

columns equal to the minimum value
used.

At least one of the instances of this

element shall have the number of
columns equal to the maximum value
used. If there is no maximum, use the
value 1280.

88

ELEMENT
Question Answer

43d min. number of rows

43e max. number of rows

43f local colour precisions

43g both modes used

Implications for Testing and
Requirements on CGM Suite-under-Test

At least one of the instances of this

element shall have the number of rows
equal to the minimum value used.

At least one of the instances of this

element shall have the number of rows
equal to the maximum value used. If

there is no maximum, use the value
1024.

There shall be at least one example of a
CELL ARRAY element for each possible
local colour precision value used.

At least 5 of the instances of CELL
ARRAY in the files in the CGM suite-

under-test shall use the less frequently
used cell representation mode value.

GENERALIZED DRAWING PRIMITIVE

44a sometimes used

44b range of values for identifier

44c min. length of data record

44d max. length of data record

RECTANGLE

45a sometimes used

CIRCLE

46a sometimes used

89

At least 5 of the files in the CGM suite-

under-test shall include this element.

At least one Instance of each allowed
escape identifier shall appear in the files

that comprise the CGM suite-under-test.

At least one instance of a GDP element
which uses a data record of minimum
length shall appear in the files that
comprise the CGM suite-under-test.

At least one instance of a GDP element
which uses a data record of maximum
length shall appear in the files that
comprise the CGM suite-under-test. If

there is no maximum, then use the value
300.

At least 10, but not more than 90% of
the files, in the CGM suite-under-test
shall include this element.

At least 10, but not more than 90% of
the files, in the CGM suite-under-test
shall include this element.

ELEMENT
Question Answer

Implications for Testing and
Requirements on CGM Suite-under-Test

CIRCULAR ARC 3 POINT

47a sometimes used At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall

Include this element.

CIRCULAR ARC 3 POINT CLOSE

48a sometimes used At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall

Include this element.

CIRCULAR ARC CENTRE

49a sometimes used At least 5, but not more than 90% of the
files. In the CGM suite-under-test shall

include this element.

CIRCULAR ARC CENTRE CLOSE

50a sometimes used

ELLIPSE

51a sometimes used

ELLIPTICAL ARC

52a sometimes used

ELLIPTICAL ARC CLOSE

53a sometimes used

LINE BUNDLE INDEX

54a sometimes used

At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall

include this element.

At least 10, but not more than 90% of

the files. In the CGM suite-under-test
shall include this element.

At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall

Include this element.

At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall

Include this element.

90

At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall

include this element.

ELEMENT
Question Answer

54b range of indices

LINE TYPE

55a sometimes used

55b range of indices

55c private values

LINE WIDTH

56a sometimes used

LINE COLOUR

57a sometimes used

MARKER BUNDLE INDEX

58a sometimes used

58b range of indices

MARKER TYPE

Implications for Testing and
Requirements on CGM Suite-under-Test

Minimum and maximum indices as well

as at least one intermediate value shall

be represented in the CGM sulte-under-

test.

At least 10, but not more than 90% of
the files, in the CGM sulte-under-test
shall include this element.

Minimum and maximum indices as well
as at least one intermediate value shall

be represented in the CGM suite-under-
test, including all standard values.

At least one example of each private

value shall be represented in the CGM
suite-under-test.

At least 10, but not more than 90% of
the files, in the CGM suite-under-test
shall include this element.

At least 10, but not more than 90% of
the files, In the CGM suite-under-test
shall include this element.

At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall

include this element.

Minimum and maximum indices as well
as at least one intermediate value shall

be represented in the CGM sulte-under-
test, including ail standard values.

59a sometimes used

91

At least 10, but not more than 90% of
the files, in the CGM suite-under-test
shall include this element.

ELEMENT
Question Answer

59b private values

MARKER SIZE

60a sometimes used

MARKER COLOUR

61a sometimes used

TEXT BUNDLE INDEX

62a sometimes used

62b range of indices

TEXT FONT INDEX

63a sometimes used

63b range of indices

TEXT PRECISION

64a sometimes used

64b more than one precision

Implications for Testing and
Requirements on CGM Suite-under-Test

At least one example of each private

value shall be represented in the CGM
suite-under-test.

At least 10, but not more than 90% of
the files, in the CGM sulte-under-test
shall include this element.

At least 10, but not more than 90% of
the files, in the CGM suite-under-test
shall include this element.

At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall

include this element.

Minimum and maximum indices as well

as at least one intermediate value shall

be represented in the CGM suite-under-

test.

At least 10, but not more than 90% of

the files, in the CGM suite-under-test
shall include this element.

Minimum and maximum indices as well

as at least one intermediate value shall

be represented in the CGM suite-under-

test.

At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall

include this element.

At least 3 of the files In the CGM suite-

under-test shall contain TEXT elements
which use the less frequently used text

precisions.

92

ELEMENT
Question Answer

CHARACTER EXPANSION FACTOR

Implications for Testing and

Requirements on CGM Suite-under-Test

65a sometimes used

65b range of reals

CHARACTER SPACING

66a sometimes used

66b range of reals

TEXT COLOUR

67a sometimes used

CHARACTER HEIGHT

68a sometimes used

CHARACTER ORIENTATION

69a sometimes used

TEXT PATH

70a sometimes used

70b more than one value

At least 5, but not more than 90% of the
files, in the CGM sulte-under-test shall

include this element.

Minimum and maximum values as well as
at least one intermediate value shall be
represented in the CGM suite-under-test.

At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall

include this element.

Minimum and maximum values as well as
at least one intermediate value shall be
represented in the CGM suite-under-test.

At least 10, but not more than 90% of
the files, in the CGM sulte-under-test
shall include this element.

At least 10, but not more than 90% of
the files, In the CGM suite-under-test
shall include this element.

At least 10, but not more than 90% of
the files, in the CGM suite-under-test
shall include this element.

At least 5, but not more than 90% of the
files, In the CGM suite-under-test shall
include this element.

At least one Instance of each supported
text path value shall be included in the
CGM suite-under-test.

ELEMENT
Question Answer

Implications for Testing and

Reauirements on CGM Suite-under-TesT

TEXT ALIGNMENT
1

71a sometimes used At least 10, but not more than 90% of

the files, in the CGM suite-under-test

shall include this element.

71b more than one value At least one instance of each supported
horizontal alignment value shall be
Included in the CGM sulte-under-test.

71c more than one value At least one instance of each supported
vertical alignment value shall be included
in the CGM suite-under-test.

CHARACTER SET INDEX

72a sometimes used At least 2, but not more than 90% of the
files, in the CGM sulte-under-test shall

include this element.

72b range of indices Minimum and maximum indices as well

as at least one intermediate value shall

be represented in the CGM sulte-under-

test.

ALTERNATE CHARACTER SET INDEX

73a sometimes used At least 2, but not more than 90% of the
files, in the CGM suite-under-test shall

Include this element.

73b range of indices Minimum and maximum indices as well

as at least one intermediate value shall

be represented in the CGM suite-under-
test.

FILL BUNDLE INDEX

74a sometimes used At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall

include this element.

74b range of indices Minimum and maximum indices as well
as at least one intermediate value shall

be represented in the CGM suite-under-
test.

94

ELEMENT
Question Answer

INTERIOR STYLE

75a sometimes used

75b more than one value

75c private values

FILL COLOUR

76a sometimes used

HATCH INDEX

77a sometimes used

77b range of indices

77c private values

PATTERN INDEX

78a sometimes used

78b range of indices

EDGE BUNDLE INDEX

79a sometimes used

Implications for Testing and
Requirements on CGM Suite-under-Test

At least 10, but not more than 90% of

the files, in the CGM suite-under-test

shall include this element.

At least one Instance of each supported
interior style value shall be included in

the CGM suite-under-test.

At least one example of each private

value shall be represented in the CGM
suite-under-test.

At least 10, but not more than 90% of

the files, in the CGM suite-under-test

shall include this element.

At least 10, but not more than 90% of
the files. In the CGM suite-under-test
shall include this element.

Minimum and maximum Indices as well

as at least one intermediate value shall

be represented in the CGM sulte-under-
test.

At least one example of each private
value shall be represented in the CGM
suite-under-test.

At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall

include this element.

Minimum and maximum indices as well
as at least one intermediate value shall

be represented in the CGM suite-under-
test.

95

At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall
include this element.

ELEMENT
Question Answer

Implications for Testing and
Reauirements on CGM Suite-under-Test

79b range of indices Minimum and maximum indices as well

as at least one intermediate value shall

be represented in the CGM suite-under-

test.

EDGE TYPE

80a sometimes used At least 5, but not more than 90% of the
files, In the CGM suite-under-test shall

include this element.

80b range of indices Minimum and maximum Indices as well

as at least one intermediate value shall

be represented in the CGM suite-under-

test, including all standard values.

80c private values At least one example of each private

value shall be represented in the CGM
suite-under-test.

EDGE WIDTH

81a sometimes used At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall

Include this element.

EDGE COLOUR

82a sometimes used At least 5, but not more than 90% of the
files, in the CGM sulte-under-test shall

include this element.

EDGE VISIBILITY

83a sometimes used At least 5, but not more than 90% of the
files, in the CGM sulte-under-test shall

include this element.

83b both values At least 2 of the files in the CGM suite-

under-test shall contain EDGE VISIBILITY
elements which use the less frequently
used on/off flag value.

FILL REFERENCE POINT

84a sometimes used

96

At least 2, but not more than 90% of the
files, in the CGM suite-under-test shall

include this element.

ELEMENT
Question Answer

PATTERN TABLE

85a sometimes used

85b index value

85c number of columns

85d number of rows

85e local colour precisions

PATTERN SIZE

86a sometimes used

COLOUR TABLE

87a sometimes used

87b min. no. of entries

87c max. no. of entries

Implications for Testing and
Reouirements on CGM Suite-under-Test

At least 1 , but not more than 90% of the
files, in the CGM sulte-under-test shall

include this element.

At least three Instances of this element
shall be included in the CGM suite-under-

test illustrating use of the minimum and
maximum indices and one value in

between.

At least three instances of this element
shall be included in the CGM suite-under-

test illustrating use of the minimum and
maximum number of columns and one
value in between.

At least three instances of this element
shall be included in the CGM suite-under-
test illustrating use of the minimum and
maximum number of rows and one value
in between.

At least one instance of each value of
local colour precision used shall be
included in the CGM sulte-under-test.

At least 2, but not more than 90% of the
files, in the CGM sulte-under-test shall

include this element.

At least 10, but not more than 90% of
the files, in the CGM suite-under-test
shall include this element.

At least one instance of this element
shall be included in the CGM suite-under-
test illustrating the use of the minimum
number of entries.

At least one instance of this element
shall be included in the CGM sulte-under-
test illustrating the use of the maximum
number of entries. If the maximum is

unlimited, use the value 300.

97

ELEMENT
Question Answer

87d index value

ASPECT SOURCE FLAGS

88a sometimes used

88b aspect source flags

ESCAPE

89a sometimes used

89b range of values for identifier

89c min. length of data record

89d max. length of data record

MESSAGE

90a sometimes used

90b both values used

90c min. length of string

Implications for Testing and
Requirements on CGM Suite-under-Test

At least three instances of this element
shall be included in the CGM suite-under-

test illustrating use of the minimum and
maximum indices and one value in

between.

At least 5, but not more than 90% of the
files, in the CGM suite-under-test shall

include this element.

At least one Instance of each value of
each aspect source flag used shall be
included In the CGM suite-under-test.

At least 5 of the files in the CGM sulte-

under-test shall include this element.

At least one instance of each allowed
escape identifier shall appear in the files

that comprise the CGM suite-under-test.

At least one instance of an ESCAPE
element which uses a data record of

minimum length shall appear in the files

that comprise the CGM suite-under-test.

At least one instance of an ESCAPE
element which uses a data record of

maximum length shall appear in the files

that comprise the CGM sulte-under-test.

If there is no maximum, then use the
value 300.

At least 5 of the files in the CGM suite-

under-test shall include this element.

At least 2 of the files in the CGM sulte-

under-test containing the MESSAGE
element shall use the less frequently
used action-required flag value.

At least one instance of a MESSAGE
element which uses a message string of
minimum length shall appear in the files

that comprise the CGM suite-under-test.

98

ELEMENT
Question Answer

Implications for Testing and

Reouirements on CGM Suite-under-Test

90d max. length of string At least one instance of a MESSAGE
element which uses a message string of

maximum length shall appear in the files

that comprise the CGM suite-under-test.

If there is no maximum, then use the
value 300.

APPLICATION DATA

91a sometimes used At least 5 of the files in the CGM suite-

under-test shall include this element.

91b range of values for identifier At least one instance of each allowed
application data identifier shall appear in

the files that comprise the CGM suite-

under-test.

91c min. length of data record At least one instance of an
APPLICATION DATA element which uses
a data record of minimum length shall

appear in the files that comprise the
CGM suite-under-test.

91 d max. length of data record At least one instance of an
APPLICATION DATA element which uses
a data record of maximum length shall

appear in the files that comprise the
CGM sulte-under-test. If there is no
maximum, then use the value 300.

PRIMITIVES AND ATTRIBUTES

92 combinations The CGM suite-under-test shall contain
all frames of all Test images (see
Appendix E) that correspond to those
combinations of primitives and attributes

that are marked on the questionnaire.

99

m
n-^m

00'W tm:l^„_

,

s
t V*jj

^V<t|

^-iAx

^:.m>r .^.xur um'^i ^>n

f

^Mi

=
‘rij^, “ri,ril rti '5<"^t 'to ? ?t|!Ui*l

tn$wno0^ V ..#f^,jp|

-^rir];'W :P^t
"'_

^t;jnimi'-i- &:<D :fWn^'i<^

y'HU) !rr^(:^f^g^5^ -\T^,Ci

An5^ krf jr . 'Xi ' '';
Ifw*' Tl+t^''xmA

;v4* 3':r> ^^4:|

;SY"' .Y

i'if^ -.'j i^"<(u,f^.m vf- **.vg.?A-.y

%.y'-4,4 s-.v?

t'j jA- i^xLi^nn

1%^

“-* -%i?’.-
. . . ,

iv.A-m
\ci

.;. _,, .
_ ^ ^

>1'- i .
* (• ' >i •» 4 4 » 4 5 ^ 55Ys^ X hn r •<4»- -'

t y.n.
-'

^Se ‘A 'iLT'A 'k^ M '

> ..?::- V- in #|^T tv? 4Jrr ^

-

'

it'^i 1\ ,1 ? ; vf "
xL^/-

/ ' W ;5Vf^Hv ^.r

ft •

^:-^: ir}^/ i/ - :<^ye ;;.;^

•V,.'"- f *.
:J!;'‘'.,’

y -''"t'] -‘^-tJy'i ii'ii ’i-^l

, ..w,.« .. ,
«•?? .1 .H?;^ /^- j:..4f’’nr;4 •#>' _;

-
.

'

; ,;
>-<i'

""

Pf?‘ *p";V’\sS^'^.-M#Vj-
^

*(

100 « . >.;ravfei;K":*>!€Si>i*^

v'“'
'

.

®

APPENDIX E

ANNOTATED TEST IMAGES

101

E.l Overview and Purpose

In this section are 18 figures that are intended to be used to
produce a set of test images that have been designed to thoroughly
check out many of the most likely combinations of graphical
primitive CGM elements and graphical attribute CGM elements. Each
figure in fact represents one or more test images. The exact
content of each test image will be governed by two main factors:

(a) The amount of information that can fit on a single
screen.

(b) The actual primitive-attribute combinations used by the
CGM generator-under-test

.

Each test image specified shall appear in the native suite and the
corresponding CGM suite-under-test.

E.2 Terminology

Metafile: A metafile is a file that conforms to the
reguirements of FIPS 128. A metafile contains one
or more pictures.

Picture: A picture is the visual representation of all the
CGM elements contained between a BEGIN PICTURE BODY
element and an END PICTURE element in a metafile.
Pictures may be mapped one-to-one or many-to-one to
metafiles.

Frame: A frame is all the visual information presented on
a single screen or hardcopy. Each frame shall be
mapped to a CGM picture within a metafile. There
might be only one frame stored in each metafile.

Subfreuae: A subframe is the information contained within each
box of the figures within this section. One or more
subframes will comprise a frame.

Test Image: A test image consists of a tiling of one or more
subframes that together exercise many of the
legitimate primitive-attribute element combinations.
The client has the freedom to decide how test images
map to frames and how frames map to metafiles.

102

E.3 Creating the Test Images

In the following pages, instructions for creating test images are
given. If any specific CGM primitive-attribute combination is not
used by the generator-under-test, the client may omit the related
subframe (s) from the test image. If any specific CGM element is
not used at all by the generator-under-test, the whole test image
may be omitted from the native suite and the counterpart CGM
suite-under-test

.

All subframes should use the CGM TEXT element to label the
subframes showing exactly the attribute parameter values used for
each object in the subframe.

The test images stipulated in this appendix can be used to satisfy
some or all of the requirements specified in the test suite
description.

E.4 The Annotated Subframes

E.4.1 POLYLINE

Figure E-1 shows the basic POLYLINE subframe. It is associated
with the CGM POLYLINE element and the five standard LINE TYPE
attributes (1 through 5)

.

To generate the test image, replicate the subframe by varying LINE
WIDTH and LINE COLOUR. The line width and line colour parameters
should take on their extreme values and at least one intermediate
value.

E . 4 . 2 DISJOINT POLYLINE

Figure E-2 shows the basic DISJOINT POLYLINE subframe. It is
associated with the CGM DISJOINT POLYLINE element and the five
standard LINE TYPE attributes (1 through 5)

.

To generate the test image, replicate the subframe by varying LINE
WIDTH and LINE COLOUR. The line width and line colour parameters
should take on their extreme values and at least one intermediate
value.

E.4. 3 CIRCULAR ARC 3 POINT

Figure E-3 shows the basic CIRCULAR ARC 3 POINT subframe. It is
associated with the CGM CIRCULAR ARC 3 POINT element and the five
standard LINE TYPE attributes (1 through 5)

.

103

To generate the test image, replicate the subframe by varying LINE
WIDTH and LINE COLOUR. The line width and line colour parameters
should take on their extreme values and at least one intermediate
value.

E.4.4 CIRCULAR ARC CENTRE

Figure E-4 shows the basic CIRCULAR ARC CENTRE subframe. It is
associated with the CGM CIRCULAR ARC CENTRE element and the five
standard LINE TYPE attributes (1 through 5)

.

To generate the test image, replicate the subframe by varying LINE
WIDTH and LINE COLOUR. The line width and line colour parameters
should take on their extreme values and at least one intermediate
value.

E.4.5 ELLIPTICAL ARC

Figure E-5 shows the basic ELLIPTICAL ARC subframe. It is
associated with the CGM ELLIPTICAL ARC element and the five
standard LINE TYPE attributes (1 through 5)

.

To generate the test image, replicate the subframe by varying LINE
WIDTH and LINE COLOUR. The line width and line colour parameters
should take on their extreme values and at least one intermediate
value.

E.4.6 POLYMARKER

Figure E-6 shows the basic POLYMARKER subframe. It is associated
with the CGM POLYMARKER element and the five standard MARKER TYPE
attributes (1 through 5)

.

To generate the test image, replicate the subframe by varying
MARKER SIZE and MARKER COLOUR. The marker size and marker colour
parameters should take on their extreme values and at least one
intermediate value.

104

Rgure E-1. POLYLINE Subframe

POLYLINE

vary width

var)' colour

105

Rgure E-2. DISJOINT POLYLINE Subframe

DISJOINT POLYLINE

vary colour

106

Rgure E-3. CIRCULAR ARC 3 POINT Subframe.

CIRCULAR ARC 3 POINT

olid

dash

dot

dash*dot

dash>dot.dot

vary width

vary colour

107

Rgure E-4. CIRCULAR ARC CENTRE Subframe.

CIRCULAR ARC CENTRE

olid

1

1

1

1

1

1

1

1

1

•

1

[
vary width

dot
1

dash-dot

1

1

1

1

dash-dot-dot

1

1

1

1

1

1

vary colour

108

Rgure E-5. ELLIPTICAL ARC Subframe.

ELLIPTICAL ARC

olid

dash

dot

daih-dot

dash-dot^dot

vmry colour

Rgure E-6. DISJOINT POLYLINE Subframe.

POLYMARKER

vary size

vary colour

110

E.4.7 TEXT (part 1)

Figure E-7 shows the first of four basic TEXT subframes. It is
associated with the CGM TEXT element and TEXT PRECISION character.

To generate the first of the TEXT test images, replicate the
subframe by varying CHARACTER ORIENTATION, TEXT PATH, and CHARACTER
EXPANSION FACTOR. The values for path, orientation, and character
expansion factor should take on at least the values illustrated in
the subframe. Different TEXT COLOURS may be used with each
different subframe.

A similar test image for RESTRICTED TEXT shall be generated in the
same way as for this TEXT test image.

E.4.8 TEXT (part 2)

Figure E-8 shows the second of four basic TEXT subframes. It is
associated with the CGM TEXT element and the text attributes TEXT
FONT INDEX, TEXT HEIGHT, CHARACTER EXPANSION FACTOR, and CHARACTER
SPACING

.

To generate the second of the TEXT test images, replicate the
subframe by varying TEXT HEIGHT, CHARACTER EXPANSION FACTOR, and
CHARACTER SPACING. One frame should be generated for each font
index used. The values for height, expansion factor, and spacing
should take on their extreme values and at least one intermediate
value. Different TEXT COLOURS should be used with each different
subframe.

A similar test image for RESTRICTED TEXT shall be generated in the
same way as for this TEXT test image.

E.4.9 TEXT (part 3)

Figure E-9 shows the third of four basic TEXT subframes. It is
associated with the CGM TEXT element and various TEXT ALIGNMENT
settings.

To generate the third of the TEXT test images, replicate the
subframe by varying CHARACTER ORIENTATION, TEXT PATH, and CHARACTER
EXPANSION FACTOR. The values for path, orientation, and character
expansion factor should take on at least the values illustrated in
the subframe. Different TEXT COLOURS may be used with each
different subframe.

A similar test image for RESTRICTED TEXT shall be generated in the
same way as for this TEXT test image.

Ill

E.4.10 TEXT (part 4)

Figure E-10 shows the fourth of four basic TEXT subframes. It is
associated with the CGM TEXT (non-final) and CGM APPEND TEXT
(final) element and various attribute settings that are changed
between the TEXT and the APPEND TEXT element. Subframes are then
varied in a pattern similar to that for figure E-7.

E.4.11 RECTANGLE

Figure E-11 shows the basic RECTANGLE subframe. It is associated
with the CGM RECTANGLE element and the five standard INTERIOR STYLE
values (hollow, solid, pattern, hatch, and empty)

.

To generate the test image, replicate the subframe by varying
PATTERN INDEX, HATCH INDEX, EDGE TYPE and EDGE WIDTH. The hatch
index and edge type parameters should take on all their standard
values. The pattern index and edge width parameters should take
on their extreme values and at least one intermediate value.
Randomly vary FILL COLOUR and EDGE COLOUR to show the effects of
these CGM attribute elements.

E.4.12 POLYGON

Figure E-12 shows the basic POLYGON subframe. It is associated
with the CGM POLYGON element and the five standard INTERIOR STYLE
values (hollow, solid, pattern, hatch, and empty)

.

To generate the test image, replicate the subframe by varying
PATTERN INDEX, HATCH INDEX, EDGE TYPE and EDGE WIDTH. The hatch
index and edge type parameters should take on all their standard
values. The pattern index and edge width parameters should take
on their extreme values and at least one intermediate value.
Randomly vary FILL COLOUR, EDGE COLOUR, and EDGE VISIBILITY to show
the effects of these CGM attribute elements.

E . 4 . 13 POLYGON SET

Figure E-13 shows the basic POLYGON SET subframe. It is associated
with the CGM POLYGON SET element and the five standard INTERIOR
STYLE values (hollow, solid, pattern, hatch, and empty)

.

To generate the test image, replicate the subframe by varying
PATTERN INDEX, HATCH INDEX, EDGE TYPE and EDGE WIDTH. The hatch
index and edge type parameters should take on all their standard
values. The pattern index and edge width parameters should take
on their extreme values and at least one intermediate value.
Randomly vary FILL COLOUR, EDGE COLOUR, and EDGE VISIBILITY and
vary the edge-out flags to show the effects of these parameter
settings and attribute elements.

112

Rgure E-7. TEXT Subframe 1.

TEXT

113

Rgure E-8. TEXT Subframe 2.

TEXT

r n
! 'fStt* ()•,-. /01234B6T89: ;<>?• visible cfaaimcten from set

ABCDEFCHIJlLinOPQKSTDWXTZa of codes = (128..2SS)

abcdaf(hijUjaiepqntaTWXTx{ I } L
if any

^

T«zt Text Text
1

1

1
Taxt Text Text

1

text hei^

1

) vary diar. exp. factor
1

1

1

char, spacing
vary colour

114

Rgure E-9. TEXT Subframe 3.

TEXT

115

Rgure E-10. TEXT Subframe 4

TEXT

116

Rgure E-11. RECTANGLE Subframe.

RECTANGLE

hollow r
1

solid
1

pattern P

hatch
H

empty f

edge type

ed^ width
pattern index

vary hatch index

interior style
vary edge colour

fOl colour

117

Rgure E-12. POLYGON Subframe.

POLYGON

wy

interior style

vnry edge colour

fQl colour

edge type

edge width
pnttem Index

hfttdi Index

118

Rgure E-13. POLYGON SET Subframe

POLYGON SET

hollow cQcG

olid 44
pattern

•w.* •• ••

7»s

hatch 1 if 44
empty

««ige type
edge width
pattern index

vary hatch index

interior style
vary edge colour

fill colour

119

E.4.14 CIRCLE

Figure E-14 shows the basic CIRCLE subframe. It is associated with
the CGM CIRCLE element and the five standard INTERIOR STYLE values
(hollow, solid, pattern, hatch, and empty)

.

To generate the test image, replicate the subframe by varying
PATTERN INDEX, HATCH INDEX, EDGE TYPE and EDGE WIDTH. The hatch
index and edge type parameters should take on all their standard
values. The pattern index and edge width parameters should take
on their extreme values and at least one intermediate value.
Randomly vary FILL COLOUR and EDGE COLOUR to show the effects of
these CGM attribute elements.

E.4.15 CIRCULAR ARC CENTRE CLOSE

Figure E-15 shows the basic CIRCULAR ARC CENTRE CLOSE subframe.
It is associated with the CGM CIRCULAR ARC CENTRE CLOSE element
and the five standard INTERIOR STYLE values (hollow, solid,
pattern, hatch, and empty)

.

To generate the test image, replicate the subframe by varying
PATTERN INDEX, HATCH INDEX, EDGE TYPE and EDGE WIDTH. The hatch
index and edge type parameters should take on all their standard
values. The pattern index and edge width parameters should take
on their extreme values and at least one intermediate value.
Randomly vary FILL COLOUR and EDGE COLOUR to show the effects of
these CGM attribute elements.

E.4.16 CIRCULAR ARC 3 POINT CLOSE

Figure E-16 shows the basic CIRCULAR ARC 3 POINT CLOSE subframe.
It is associated with the CGM CIRCULAR ARC 3 POINT CLOSE element
and the five standard INTERIOR STYLE values (hollow, solid,
pattern, hatch, and empty)

.

To generate the test image, replicate the subframe by varying
PATTERN INDEX, HATCH INDEX, EDGE TYPE and EDGE WIDTH. The hatch
index and edge type parameters should take on all their standard
values. The pattern index and edge width parameters should take
on their extreme values and at least one intermediate value.
Randomly vary FILL COLOUR, EDGE COLOUR, and EDGE VISIBILITY to show
the effects of these CGM attribute elements.

E.4.17 ELLIPTICAL ARC CLOSE

Figure E--17 shows the basic ELLIPTICAL ARC CLOSE subframe. It is
associated with the CGM ELLIPTICAL ARC CLOSE element and the five
standard INTERIOR STYLE values (hollow, solid, pattern, hatch, and
empty) .

120

To generate the test image, replicate the subframe by varying
PATTERN INDEX, HATCH INDEX, EDGE TYPE and EDGE WIDTH. The hatch
index and edge type parameters should take on all their standard
values. The pattern index and edge width parameters should take
on their extreme values and at least one intermediate value.
Randomly vary FILL COLOUR and EDGE COLOUR to show the effects of
these CGM attribute elements.

E.4.18 ELLIPSE

Figure E-18 shows the basic ELLIPSE subframe. It is associated
with the CGM ELLIPSE element and the five standard INTERIOR STYLE
values (hollow, solid, pattern, hatch, and empty)

.

To generate the test image, replicate the subframe by varying
PATTERN INDEX, HATCH INDEX, EDGE TYPE and EDGE WIDTH. The hatch
index and edge type parameters should take on all their standard
values. The pattern index and edge width parameters should take
on their extreme values and at least one intermediate value.
Randomly vary FILL COLOUR and EDGE COLOUR to show the effects of
these CGM attribute elements.

121

Rgure E-14. CIRCLE Subframe.

CIRCLE

hollow o •••

aolid • • ...

pattern ...

vary width

hatch m m ...

empty o ...

vary colour

122

Rgure E-15. CIRCULAR ARC CENTRE CLOSE Subframe.

uiliOULAR ARC CLOSC

hollow

C\ Q
•olid J j

vary width

pAttcxn

42!

hotdi

/tH ^
empty G C\

vary colour

123

Figure E-16. CIRCULAR ARC 3 POINT CLOSE Subframe.

CIRCULAR ARC 3 POINT CLOSE

hollow d n
•

1

1

1

1

•olid

•

•

1

J
vary width

pattern
•

t

1

hatdi

£0

1

1

1

1

onpty n
1

1

1

1

vary colour

124

Rgure E-17. ELUPTICAL ARC CLOSE Subframe.

ELLTPnCAL ARC CLOSE

hoUow n o
olid m
pattern

hatch

dB
empty a o

vary colour

vary width

125

Rgure E*18. ELLIPSE Subframe

hollow

oBd

pattern

hatch

empty

vary ooloor

126

NIST-1 14A

(REV. 3-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

1. PUBUCATION OR REPORT NUMBER

NISTIR 4806

BIBLIOGRAPHIC DATA SHEET
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE
MARCH 1992

4. TITLE AND SUBTITLE

Procedures Manual for Testing CGM Generator Products That

MIL-D-28003

Claim Conformance to FIPS 128 and

5. AUTHOR(S)

Daniel R. Benigni, Editor

6. PERFORMING ORGANIZATION OF JOINT OR OTHER THAN NIST. SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

1/90 through 12/92

9. SPONSORINQ ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY. STATE, ZIP)

Defense CALS Executive Office
Pentagon, Room 3D833
Washington, DC 20301-8000

10.

SUPPLEMENTARY NOTES

11.

ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE.)

A total Computer Graphics Metafile (CGM) conformance test suite that tests both the CGM

standard (FIPS 128) and the CGM Application Profile for CALS (MIL-D-28003) must test
three things: metafiles, generators, and interpreters. NIST has developed a test tool for
testing metafiles, and a conformance testing service has begun. This report provides a

procedures manual specifying the methodology and details for testing conformance of CGM

generator products. The procedures enable a tester to verify that a CGM generator produces
conforming metafiles which accurately and correctly define the intended picture.

12.

KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

application profile; CALS; CGM; CGM generator testing; Computer Graphics Metafile;
conformance testing; Federal Information Processing Standard 128, Military Specification
MIL-D-28003; metafiles; procedures manual.

13. AVAILABILITY 14. NUMBER OF PRINTED PAGES

UNUMITED
136

FOR OFFICUU. DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

IS. PRICE

AO 7

X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINORELD,VA 22161.

ELECTRONIC FORM

.,55^3?!

'

tmHBmmbmAm^M^
HI ^jiwi n I iiii‘i »»iM» rt iiiiiV

)^oi i i i
i i i> iii l

^

^l^l^i|l| l^^ll
•

«lll^^l^ ^n^ l ^'^i^ r >* iiiiirnfinwi ri |i*nijft‘r ntWiiir 1 '

i

i
" »i

!
i
rm» ni i •• -fr^-'r ^

'
- • .

• ' ^
" '.'V- ,

! '‘i
^ M

'
'

i^-
'

'3?^
oit f s.'-''*^.'

->•
• . -. _U • - • *.-^--i>f>f

iSS^-'TK^ iu-“t- »:'«e ^ •.'t1 nji.. v;ii ^ -'^

'

' i .

?;v\SL (ij?uo=i^:j 0 ';\f
I :

coca* I sa

Ji .«r*^ «>-.> S-V. /.ml e h itKlf.* >_ 1.'^

^

:w-j Srti Uric- ,.,,>.•:! HfSt H'nn im:}-)

-far 'nr-,, SHj .a

^

^ zr.b'i’-Wn '"icas'i- ;.KiT
^

.=A.v‘fr ,'o-^:.i
-. - M3 C‘ n v^f-rsv 'ci; >05-fc3:t t|

’\

> ,-•>: • - '

UI

k

« t^«j>#'^ir> -. »»»w

